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Abstract—This paper presents an effective method to reduce
the iron losses of wound core distribution transformers based on a
combined neural network- genetic algorithm approach. The origi-
nality of the work presented in this paper is that it tackles the iron
loss reduction problem during the transformer production phase,
while previous works were concentrated on the design phase. More
specifically, neural networks effectively use measurements taken
at the first stages of core construction in order to predict the iron
losses of the assembled transformers, while genetic algorithms
are used to improve the grouping process of the individual cores
by reducing iron losses of assembled transformers. The proposed
method has been tested on a transformer manufacturing industry.
The results demonstrate the feasibility and practicality of this
approach. Significant reduction of transformer iron losses is ob-
served in comparison to the current practice leading to important
economic savings for the transformer manufacturer.

Index Terms—Core grouping process, decision trees, genetic al-
gorithms, intelligent core loss modeling, iron loss reduction, neural
networks.

I. INTRODUCTION

I N today’s competitive market environment, there is an
urgent need for a transformer manufacturing industry to

improve transformer efficiency and to reduce cost, since high
quality, low cost products have become the key to survival.
Transformer efficiency is improved by reducingload and iron
losses. To reduce load losses, the designer can do one or more
of the following: use lower loss conductor materials or decrease
the current path length or the current density. On the other
hand, the designer can reduce iron losses by using lower loss
core materials or reducing core flux density or flux path length
[1]. In general, attempts to reduce load losses cause increase of
iron losses and vice versa [1]. As a result, before deciding the
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optimal design method, it is necessary to determine which of
the two losses should be minimized. Usually, the transformer
users (e.g., electric utilities) specify a desired level of iron
losses (guaranteed losses) to determine the transformer quality.
This is due to the fact that the accumulated iron losses in a
distribution network are high since a large amount of distribu-
tion transformers is involved. In addition, iron losses appear 24
hours per day, every day, for a continuously energized trans-
former. Thus, it is in general preferable to design a transformer
at minimum iron losses [2] and this is addressed in this paper.

Initially, transformers are designed so that their iron losses are
equal (with perhaps a safety margin) to the guaranteed ones. In
practice, however, transformer actual iron losses deviate from
the designed (theoretical) ones due to constructional defects,
which appear during the production phase. Reduction of trans-
former actual losses, by minimizing the effect of constructional
defects, is a very important task for a manufacturing industry.
In particular,

1) it increases the reliability of the manufacturer;
2) it reduces the material cost, since smaller safety margin is

used during the transformer design phase;
3) it helps the manufacturer not to pay loss penalties.

The latter occurs in case the actual transformer losses are
greater (usually 15%) than the guaranteed ones. In general, it
is clear that manufacturers, who are able to offer transformers
of better quality (lower losses) at the same price, will increase
their market share.

Several works have been proposed in the literature for the
estimation of transformer iron losses during the design phase.
These approaches can be grouped into two main categories.
The first group is based on the arithmetic analysis of the elec-
tromagnetic field of the transformer cores, while the second
group uses iron loss models based on experimental observa-
tions. In the former approach, finite elements and finite differ-
ence methods are mainly used. The potentials of the electro-
magnetic fields are calculated, by creating mesh models of the
transformer geometry, and using several field parameters, such
as the magnetic flux distribution. This analysis is very impor-
tant during the transformer design phase, when the manufac-
turer needs to check the correctness of the transformer draw-
ings. Key works adopting this approach are provided next. In
[3], the three-dimensional (3-D) leakage fields are estimated and
in [4] the spatial loss distribution is investigated using a generic
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two-dimensional (2-D) finite difference method. Three-dimen-
sional magnetic-field calculations are performed in [5] to eval-
uate several transformer parameters, while in [6] the effects of a
number of core production attributes on core loss performance
have been examined. Other works, in this category, model three-
phase transformers based on the equivalent magnetic circuit of
their cores [7], [8].

In the second approach, experimental curves are usually ex-
tracted using a large number of measurements to investigate the
effect of several transformer parameters on iron losses [2]. How-
ever, due to the continuous evolution both of technical character-
istics of the magnetic materials and the design of cores, the ex-
perimental curves should systematically be reconstructed when
data change. Alternatively, linear or simple nonlinear models
are used in order to relate transformer iron losses to the mag-
netic induction and geometrical properties of the magnetic core
[9]–[11]. The parameters of these models are estimated based
on experimental observations. However, these methods provide
satisfactory results only for data (transformers) or conditions on
which they have been estimated. Their performance deteriorates
severely in case of new samples, which are not included in the
“training” set.

Although, all the aforementioned approaches (theoretical or
experimental) provide a sufficient framework for the calcula-
tion of transformer iron losses during the design phase, they do
not take into account the effect of constructional defects, which
cause the deviation of the actual losses from the theoretical ones.
More specifically, it has been found that the maximum diver-
gence between the theoretical and actual iron losses of a specific
production batch could as high as10%. These deviations are
to a great extent attributed to the deviations of the actual core
characteristics from the designed ones. For example, the max-
imum deviation of the iron losses of the individual cores can
reach up to 15%, while the maximum deviation of the core
weights up to 1.5% [12].

In this paper, reduction of transformer iron losses is achieved
during the transformer production phase. In particular, an
optimal method is presented to estimate the most appropriate
arrangement of individual cores, which yields transformers of
minimum actual iron losses. This is achieved by compensating
the constructional defects, which appear in the production
phase. The method is relied on a combined neural network-ge-
netic algorithm (GA) scheme. The goal of the neural network
architecture is to predict transformer actual losses prior to their
assembly. For this reason, several measurements (attributes) are
obtained during the transformer production phase. A decision
tree methodology is adopted next to select the most significant
attributes, which are fed as inputs to the neural network. A
genetic algorithm is finally applied to estimate the optimal
arrangement of individual cores that assemble a transformer. In
our case, optimality means that the iron losses of all constructed
transformers in a production batch should be as minimal as
possible. The genetic algorithm exploits information provided
by the neural network architecture to perform the minimization
task. In particular, the network predicts the transformer quality
(iron losses) of a given core arrangement. The proposed scheme
has been applied in a transformer manufacturing industry and
the results reveal a significant economic benefit.

Fig. 1. Assembled active part of a wound core transformer.

This paper is organized as follows. Section II describes the
current practice for estimating iron losses and for grouping the
individual cores. Section III presents a general overview of the
proposed method. Section IV presents the prediction of iron
losses using neural networks. In particular, in this section we
describe the constructive algorithm used to train the network,
the method applied for attribute selection and the weight adap-
tation algorithm used for improving the network performance.
Section V presents the reduction of iron losses using a GA. In
this section, we also discuss issues related to the GA conver-
gence. Finally, Section VI shows the results and economic ben-
efits obtained from the application of the proposed techniques
in a transformer industry. Section VII concludes the paper.

II. CURRENT PRACTICE FORPREDICTING IRON LOSSES AND

GROUPINGINDIVIDUAL CORES

A three-phase wound core distribution transformer is con-
structed by assembling two small and two large individual cores,
according to the arrangement described in Fig. 1. In particular,
the four cores are placed as follows: a small core, followed by
two large cores, followed by another small core (from left to
right). The window width of large cores is twice of the width of
small cores. Based on the previous arrangement,three-phase
transformers are constructed from small and large
individual cores. Let us denote as ( ) the set of all
small (large) cores. A transformer is represented by a vector,
the elements of which corresponds to the four individual cores
that assemble the transformer

(1)

Variables , represent the left and right small core of
transformer , while , the left and right large core, re-
spectively. Since only one core (small or large) can be assigned
to one transformer and one position (left or right), the following
restrictions are held:

(2a)

with (2b)

where ( ) indicates the small (large) core in the left or
right position for the transformer. In the following subsection,
we analyze how the iron losses are estimated in current practice,
while Section II-B presents the current core grouping process,
used to assemble a transformer.
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Fig. 2. Typical loss curve, which is used in the examined industrial
environment.

A. Core Loss Estimation

Iron losses constitute one of the main parameters for deter-
mining the transformer quality. Usually, customers’ specifica-
tions define an upper limit, say concerning transformer iron
losses. For this reason, the transformer is designed [13] so that
its theoretical (design) iron losses are less or equal to the
specified loss limit :

(3)

where corresponds to the safety margin used during the trans-
former design.

In current practice, the typical loss curve is used to estimate
the theoretical iron losses of the transformer . The loss
curve expresses the relationship between specific iron losses

, i.e., losses normalized per weight unit (in W/Kg) versus
magnetic induction (in Gauss). A typical loss curve used in
the considered industrial environment is depicted in Fig. 2 as
the dotted line. The design iron losses of the transformer
are estimated by multiplying specific iron losses, calculated
from Fig. 2 at a given rated magnetic induction, by the theoret-
ical (design) total core weight, , of transformer

(4)

The theoretical core weight of transformer, i.e., , is cal-
culated from the theoretical weights of its four individual cores.
That is

(5)

where and are the theoretical weights of small and large
cores.

The theoretical weights of individual cores depend on their
geometrical dimensions (i.e., width and height of core window,
thickness and width of core leg), the core space factor and the
rated magnetic induction, as described in [14]. The magnetic
induction is the same as the one used for the three-phase trans-
former to estimate the specific losses based on the curve of
Fig. 2.

Based on the above, various transformer parameters, which
affect the theoretical transformer weight and its specific iron
losses, are examined and the design which satisfies the cus-
tomers’ requirements (3) at a minimum cost, is selected as the
most appropriate.

The total theoretical (design) losses of the four individual
cores assembled to construct the transformerare given by

(6)

where , are the theoretical (design) iron losses of small
and large individual cores, while represents the theoretical
(design) total iron losses of the four individual cores of. The
theoretical (design) iron losses of the four individual cores can
be computed based on their loss curve (solid line of Fig. 2) at the
rated magnetic induction used for the three-phase transformer. It
should be mentioned that the total iron lossesare not equal to
the transformer iron losses since additional losses in general
appear during the assembly of the four individual cores, i.e.,

.

B. Core Grouping Process

Although all transformers constructed under the same de-
sign should present the same iron losses, their actual losses,
say usually diverge from the designed ones. This is due to
the fact that several parameters, involved in the construction
process, such as the formation of individual cores, the condi-
tions of transformer production, and the quality of magnetic
material, affect the final transformer quality. Thus, it is pos-
sible for the actual iron losses of a transformer to exceed the
upper loss limit . The same happens with the actual losses
of individual cores, which in general differ from the designed
ones. In the following, we denote as ( ) the actual iron
losses of a large (small) individual core from all avail-
able large (small) cores. Therefore, random assembly of two
small and two large cores to form a three-phase transformer
may result in transformers of significant deviation from their de-
signed quality. In particular, grouping together only cores of low
quality constructs transformers of unacceptable quality. For this
reason, a grouping process of individual cores is performed by
assembling cores of high and low quality together. In this way,
cores of low quality are compensated with cores of high quality
to reduce the deviation of transformer actual losses from the de-
signed ones. In current practice, the following grouping method
is used.

Initially, individual cores (small or large) are classified into
“quality classes” according to the deviation of their actual losses
from the designed ones. In particular, the quality classes for
small/large cores are defined as follows:

(7a)

(7b)

where seven “quality classes” are assumed. Thecorresponds
to the class width and , are the theoretical iron losses of
a small/large core as it has been defined in the previous sub-
section. Positive values of indexcorrespond to cores with ac-
tual iron losses greater than the designed ones. On the contrary,
negative values indicate actual losses smaller than the designed
ones. Consequently, as the indexincreases, the core quality
decreases and vice versa. Cores belonging to the class of zero
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index, i.e., or , present actual iron losses close to the the-
oretical ones within a deviation of .

A grade is assigned to each class indicating its quality, so
that all cores of a class are characterized by the same quality
grade. Since the class indexis inversely proportional to the
core quality, the negative index of the respective class is defined
as its grade

if (8a)

if (8b)

where we recall that , and is a small/large core
from all small and large available.

Based on the quality grade of each individual core, a grouping
process is applied to reduce the deviation of the actual iron
losses of the constructed transformers. In particular, cores of
high and low quality grades are assembled together to prevent
production of transformers with very low or too high quality.
This is accomplished by selecting the four individual cores,

, comprising the transformer, so that the sums of
the quality grades of the two small and two large cores are close
to zero, that is

and (9)

or equivalently is held that

(10)

where represents the total actual losses of the four individual
cores assembled to construct the transformer. Equation (10)
indicates that the average actual iron losses of the two small and
two large individual cores for all transformersare close to the
theoretical ones with an uncertainty interval of, i.e., the class
width.

In the above method, the quality of individual cores is used
to indicate the quality of three-phase transformers. However,
the actual losses of a transformer are not equal to the losses of
its individual cores. This is due to the fact that additional pa-
rameters appear during the transformer construction, like the
exact arrangement of the four individual cores, which are not
considered by the above-mentioned technique. For example, re-
ordering the two small or the two large cores of a transformer,
results in different actual iron losses though the average losses
of the four cores remain the same. Another drawback of the cur-
rent grouping process is that it does not provide the optimal ar-
rangement of the small and large cores so that the
iron losses of the constructed transformers are as minimal as
possible.

III. PROPOSEDMETHOD

In this paper, a novel technique is proposed so that the
small and large cores are appropriately arranged to con-
struct transformers of optimal quality. Fig. 3 presents a block
diagram of the proposed scheme. First, the transformer design
is accomplished based on customers’ specifications and sev-
eral techno-economical criteria as described in Section II-A. In
this phase, several constructional parameters of the transformer

Fig. 3. Proposed combined neural network-genetic algorithm method applied
for iron loss reduction.

are specified, such as the geometric characteristics of individual
cores, the thickness, grade and supplier of magnetic material,
and the rated magnetic induction. Then, the individual cores are
constructed and several measurements are taken for each core to
determine the core performance. Next, a combined neural net-
work and genetic algorithm approach is used to estimate the
optimal core arrangement which results in three-phase trans-
formers of minimum iron losses. More specifically, the mea-
surements taken from the core construction phase, as well as ad-
ditional parameters, affecting the transformer quality, are used
to predict the actual iron losses of the transformer. The predic-
tion is accomplished through a neural network that relates all the
parameters, called attributes, with the actual transformer losses.
A new grouping process is then applied to minimize the iron
losses of all constructed transformers by the available small and
large cores. In general, the number of core combinations is ex-
tremely large for a typical number of small/large cores. For that
reason a genetic algorithm has been adopted to estimate within
a few iterations the optimal arrangement of the four individual
cores so that transformers of the best quality are constructed. In
particular, at each step, a population of new core arrangements is
generated and prediction of the actual iron losses of the respec-
tive transformers is accomplished by the neural network model
until minimal losses are provided for one specific (optimum) ar-
rangement.
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TABLE I
THREE ENVIRONMENTS CONSIDERED IN THEEXAMINED MANUFACTURING

INDUSTRY

IV. NEURAL NETWORKS FORPREDICTING IRON LOSSES

The neural network architecture used for predicting the ac-
tual iron losses of a three-phase transformer is analyzed in this
section. For each transformer, several attributes are extracted
and gathered in a vector, say . This vector is fed as input
to the neural network. However, for different types of magnetic
material and supplier, different relations between the extracted
attributes and transformer actual losses are expected. This is
due to the fact that each supplier follows a specific technology
of magnetic material production, while the grade and thickness
present their own characteristics. In the following, the term envi-
ronment is used to indicate a given supplier, thickness and grade
of magnetic material. Table I presents the three different envi-
ronments used in the considered industry.

Let us assume in the following that M environments are avail-
able, denoted as , . In this case, M nonlinear
functions, say with are defined which
relate the attributes of with the respective actual spe-
cific iron losses . That is

(11)

Since functions are actually unknown, feedforward
neural networks are used to estimate them. The use of feed-
forward networks is due to the fact that they can approximate
any nonlinear function within any degree of accuracy [15, pp.
208–213, 249]. In our case, feedforward neural networks
are implemented, each of which corresponds to a specific
environment. A single neural network can be also applied
but using the environment type as additional network input.
However, such an approach provides greater generalization
error than using independent networks as is shown in the
section of the experimental results.

Let us denote as an approximate of function as
is provided by the network. Then the estimate of specific iron
losses, say , of a transformer with attributes is given
as

(12)

As can be seen, in (11) and (12), the actual specific iron
losses (in watts per kilogram) have been used as output of
the neural network model, instead of the actual iron losses
(in watts). This selection improves the network performance
(generalization) since normalization of the network output
is performed per weight unit. Furthermore, neural network
training is made more efficient by using such a normalization
scheme. Then, the actual transformer iron losses are calculated

by multiplying by the sum of the actual weights of the four
individual cores that assemble the transformer.

Selection of the most appropriate environment is performed
during the design phase, where the type of the magnetic material
and the respective supplier are determined. Consequently, the
environment type is known before the transformer construction.

The neural network structure used to approximate is de-
picted in Fig. 4. As is observed, the network consists of a hidden
layer of neurons, input elements and one output neuron.
In our case, a linear output unit is used, since the network ap-
proximates a continuous valued signal, i.e., the specific iron
losses of a transformer. The number of hidden neurons, as well
as the network weights are appropriately estimated based on a
constructive training algorithm, which is described in the fol-
lowing subsection. Furthermore, a decision tree (DT) method-
ology is adopted to select the most appropriate attributes used
as inputs to the network among a large number of candidates
ones (see Section IV-B.) Finally, Section IV-C presents a weight
adaptation algorithm used to adapt the network weights in case
that a slight modification of the environment conditions is en-
countered.

A. Network Training and Generalization Issues

The neural network size affects the prediction accuracy. Par-
ticularly, a small network is not able to approximate compli-
cated nonlinear functions, since few neurons are not sufficient
to implement all possible input–output (I/O) relations. On the
other hand, recent studies on network learning versus general-
ization, such as the VC dimension [16], [17] indicate that an
unnecessarily large network heavily deteriorates network per-
formance. In this paper, the constructive algorithm, presented in
[18], has been adopted to simultaneously estimate the network
size and the respective network weights. Usually, constructive
approaches present a number of advantages over other methods
used for network size selection. More specifically, in a construc-
tive scheme, it is straightforward to estimate an initial size for
the network. Furthermore, in case that many networks of dif-
ferent sizes provide acceptable solutions, the constructive ap-
proach yields the smallest possible size [18].

Let us denote as the function, which implements the
neural network of Fig. 4, in case thatn hidden neurons are
used. The subscriptis omitted in the following analysis since
we refer to a specific environment. If we denote as ,

the function that theth hidden neuron implements,
then the network output is given as

(13)

where is the weight, which connects the jth hidden neuron
to the output neuron (see Fig. 4) and the estimate of the
actual specific iron losses provided by a network ofhidden
neurons.

Based on the neural network structure of Fig. 4, function
is written as

(14)



GEORGILAKIS et al.: NOVEL IRON LOSS REDUCTION TECHNIQUE 21

Fig. 4. Proposed feedforward neural network architecture used for iron loss prediction.

where
activation functions of hidden neurons (the sigmoid in
our case);
weight vector, which connects theth hidden neuron
with the input layer;
bias of the th hidden neuron.

Let us now assume that a new unit (neuron) is added to the
hidden layer of the network. Let us also denote as the
estimate of specific actual losses provided by a network of
hidden units. Then, based on (13), the following relationship is
satisfied:

(15)

In the previous equation, refers to the function that
implements the new added hidden neuron. As results from
equation (14), function is defined by the weight vector

and the respective bias . In the adopted constructive
method, only the parameters associated to the new hidden unit
are permitted to change, i.e., the weights , the bias
and the weight output . All the other network weights are
considered fixed.

In particular, the new network weights are estimated so that
the error between the actual specific iron losses and the ones
estimated by the network decreases as a new hidden neuron is
added. To estimate the new network weights, we initially define
the following quantity:

(16)

where

(17)

represents the residual error of the target nonlinear function (ac-
tual specific iron losses) and the one implemented by a neural
network ofn hidden neurons. In (16), the corresponds to the
inner product, while to the norm.

Based on functional analysis, it has been proven in [18] that
the error tends to zero as the number ofincreases, i.e.,

, if the weights associated to the new hidden
added neuron are estimated by

(18a)

and (18b)

Consequently, if a neural network is constructed incremen-
tally, with weights that satisfy (18) then strongly convergence
to the target function is accomplished. Maximization of (18) is
performed using the algorithm of [19].

However, in practice, the exact form of target functionh ac-
tually is unknown, and thus the error cannot be directly cal-
culated. For this reason, a training set is used, consisting ofL
transformers, all belonging to the same environment, to provide
a consistent estimate of .

In particular, let us denote as this training set. Then, an
estimate of quantity is given by

(19)

where

(20)

is the absolute difference between the actual specific iron losses
and the predicted ones for a network ofn hidden neurons in case
of a transformer . In (19), and are the mean
values of functions and over all samples of set .

Equation (19) expresses the correlation between the function
implemented by the new added hidden neuron and the previous
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residual error (before the new neuron is added) over all sam-
ples (transformers) of training set . This means that the new
neuron compensates the residual error as much as possible and
therefore the error over data of the training set decreases as the
number of hidden neurons increases.

The generalization performance, however, of the neural net-
work, i.e., the error over data outside the training set, does not
keep on improving as more hidden units are added. This is due
to the fact that a large number of hidden units makes the net-
work sensitive to the data of . Particularly, what a network is
learning beyond a number of hidden neurons is actually noise
of data of the training set. As a result, the generalization perfor-
mance starts to decrease and the incremental construction of the
network is terminated. In our case, this is accomplished by ap-
plying the cross validation method. According to this method,
the available data are divided into two subsets; the first subset
(training set) is responsible for estimating the network parame-
ters, while the second subset (validation set) evaluates the net-
work performance. The error on the validation set will normally
decrease during the initial phase of training, as does the error on
the training set. However, when the network begins to overfit
the data, the error on the validation set will typically begin to
rise and the constructive training algorithm is terminated (early
stopping).

B. Attribute Selection

Another factor, which affects the network performance, is the
type of attributes used as network input. For attribute selection,
initially, a large set of candidates is formed based on extensive
research and transformer designers’ experience. Particularly, in
our case, 19 candidate attributes are examined, which are de-
noted as , and presented in Table II.

In this table, ( ) denotes the specific iron losses of mag-
netic material at 15 000 Gauss (17 000 Gauss) of the left small
core . The specific iron losses for the other three cores are de-
noted accordingly. denotes the sum of the actual iron losses
of the four individual cores that assemble the transformerand
is defined similarly to (6) as

(21)

where and are the actual (measured) iron losses of the
left and right small individual core of . Similarly, and
correspond to the actual iron losses of the left and right large
individual core. The physical meaning of the other variables of
Table II are explained in Section II.

1) Decision Tree (DT) Methodology:A decision tree (DT)
methodology [20], [21] has been adopted in this paper for at-
tribute selection. Initially, an acceptability criterion is defined.
Let us denote as the class, which contains all acceptable
transformers and as the class, which contains all unaccept-
able transformers. In our case, classesand are defined as
follows:

(22a)

(22b)

where is a constant indicating the unacceptability threshold.
In order to describe the structure of a DT, we initially present

an example in Fig. 5 created from a set of 1680 transformers of
the first environment. As observed, the tree consists of two dif-
ferent types of nodes; the terminal nodes and the nonterminal

TABLE II
LIST OF THE CANDIDATE ATTRIBUTES CONSIDERED ASPOSSIBLE

INPUTS OF THENETWORK

nodes. A node is said to be terminal if it has no children. On the
contrary, each nonterminal node has two children and is charac-
terized by an appropriate test (condition) of the following form:

(23)

where is a threshold value of attribute, optimally estimated
during the DT construction. This test dichotomizes the nonter-
minal node in the sense that the left child contains all trans-
former (samples), which satisfy the test of parent node, while
the right child contains the remaining transformers. For each
node, the number of transformers (samples) that this node con-
tains and the respective acceptability ratio is also presented.

Based on the acceptability ratio, a terminal node is classified
to one of the two available classes. In particular, in case that
the acceptability ratio is greater than 50%, the terminal node is
assigned to class . Otherwise, it is assigned to class. The
exact notation used for each DT node of Fig. 5 is explained in
Fig. 6.

A DT is created by applying two main operators; the splitting
operator and the stopping operator. The first estimates the most
appropriate test that should be applied to a nonterminal node,
while the second determines whether a node is terminal or not.
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Fig. 5. Decision tree created from a set of 1680 transformers of the first environment.

Fig. 6. Explanation of the notation of the decision tree, which is used in Fig. 5.

For the spitting operator, the optimal splitting rule described
in [20] is used in our case. More specifically, the algorithm es-
timates the test that provides the best separation of all trans-
formers of the examined node into acceptable and unacceptable
samples. The optimal slitting rule is repeated for each node of
the tree, until a node is labeled as terminal according to the stop-
ping criterion. Two different types of terminal nodes are distin-
guished; the “LEAF” and “DEADEND” nodes. A node is said
to be “LEAF” if it contains transformers, which completely be-

long (or in practice almost completely) in one of the two classes.
On the other hand, a node is denoted as “DEADEND” if the
gain by splitting this node provides no significant statistical in-
formation. This gain is determined by the risk levelof the DT
[20]–[22].

2) Implementation Issues:The risk level affects the struc-
ture of a DT. In particular, in case a small value of risk level is
used, the tree is grown with a small number of nodes and vice
versa. However, the classification performance of a DT does not
keep on improving as its size increases. For this reason, the op-
timal value of risk level is the one that provides the maximum
classification accuracy with the minimum possible DT com-
plexity (minimum number of tree nodes). In order to estimate
the classification performance of a DT, we use a differenteval-
uation set. For each sample (transformer) of this set, thetests
(conditions) of the nonterminal nodes are evaluated until a ter-
minal node is reached. Then, the classification accuracy is com-
puted by comparing the actual class that this sample belongs to,
with the class of terminal node, which this sample is assigned
to.

Fig. 7 illustrates the classification accuracy of the DT of Fig. 5
using a set of 560 transformers (samples) of the first environ-
ment for risk levels in the range of 0.001% to 10%. As it can
be seen, the classification accuracy increases until a risk level
smaller than 0.75%. Then, it starts to decrease. Furthermore,
the maximum accuracy (i.e., 95.5%) is reached for risk levels in
the interval 0.20%–0.75%. Fig. 8 illustrates the DT complexity
(number of nodes) versus the risk level. As observed, the DT
complexity increases with respect to the risk level. By com-
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Fig. 7. Effect of risk level on the classification accuracy.

Fig. 8. Effect of risk level on the decision tree complexity (number of tree
nodes).

bining Figs. 7 and 8, we can estimate the risk level value that
provides the maximum accuracy at the minimum possible DT
complexity. This is achieved using 13 DT nodes as illustrated in
Fig. 5.

The DT of Fig. 5 has been created by applying the aforemen-
tioned splitting and stopping operators with a risk level equal to
0.25%. As observed, only five attributes among the 19 candi-
date ones are extracted in this case as the most appropriate, the

, and .
It has been observed that the classification accuracy of the DT

deteriorates in case it is constructed by transformers belonging
to all environments [12]. For this reason, three different mea-
surement sets, each of them corresponding to a specific envi-
ronment, are used to construct the DT (2240, 2350, and 1980
samples respectively). In order to extract the most significant
attributes, which are used as inputs to the neural network, we
built several DTs by 1) randomly selecting different transformer
samples of each measurement set to build the tree and 2) by
using different values of constant. In our case, 30 randomly se-
lected sets have created for each measurement set
sets for all environments), and five different values ofuni-
formly distributed in the interval 7%–15%. Then, for each case,
the optimal risk level is estimated. This is performed by exam-
ining 20 different risk levels in the interval 0.001%–10% and
the one which maximizes the DT classification accuracy at the
minimum DT complexity is selected as the optimal one, as de-
scribed above. Consequently 9000 DTs are examined

, 450 of which correspond to the optimal risk level
value. The latter (i.e., the 450) are used for the attribute selec-
tion. As we have observed, in most cases, the same attributes are
extracted, whereas some of them are not selected at all. Further-
more, the same attributes are extracted, even for transformers
belonging to different environments. This is due to fact that the
environment type determines the influence of an attribute value
on transformer iron losses but not the type of attributes.

TABLE III
SELECTED ATTRIBUTES BY THE DECISION TREE METHODOLOGY

Taking into account all DTs, the attributes with a probability
of appearance greater than 3% are selected as network inputs.
These attributes are presented in Table III. It should be men-
tioned that in this case we renumbered the selected attribute in-
dices of Table II as they are presented in consecutive order in
Table III. A small value of probability has been chosen since it
is more preferable to use more attributes as inputs to the network
architecture than discard some (maybe significant for some sit-
uations) of them.

The selection of these attributes is reasonable and expected.
More specifically, attribute is the rated magnetic induction,
which is also used in order to calculate iron losses at the de-
sign phase by using the loss curve. Attributesand express
the average specific losses (W/Kg at 15 000 Gauss and 17 000
Gauss, respectively) of magnetic material of the four individual
cores used for transformer construction. Attributeis the ratio
of actual over theoretical weight of the four individual cores.
Attribute is equal to the ratio of actual over theoretical iron
losses of the four individual cores. The significance of the at-
tribute is that the iron losses of the three-phase transformer
depend on the iron losses of its individual cores. In the industrial
environment considered, it is observed that the arrangement of
cores influences the assembled transformer core losses. This is
reflected through the selection of attributes, , and by the
DT methodology (see Table III).

C. Weight Adaptation

In some cases, the conditions under which the respective
neural network has been trained may slightly change over time.
For example, it is possible that different batches of magnetic
material, belonging to the same environment, present small
variations in their technical characteristics. In such cases, the
network performance is improved by introducing a weight
adaptation mechanism, which slightly modifies the network
weights to the new conditions.

The weight adaptation mechanism is activated when the net-
work performance deteriorates. This is accomplished during the
evaluation phase(see Section III and Fig. 3), in which the pre-
dicted iron losses are compared with the actual ones. In case
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that the average prediction error is greater than a pre-determined
threshold, the weight adaptation mechanism is activated and
new network weights are estimated. The threshold considered
is slightly greater than the average error over all data of a test
set, which expresses the generalization performance of the net-
work.

The adaptive training algorithm modifies the weights so that
the network appropriately responds to new data, and also pro-
vides a minimal degradation of the old information [23], [24].
Training the network, without using the old information, but
only the new data, would result in a catastrophic forgetting of the
previous knowledge [25]. In our case, the algorithm proposed in
[24] has been adopted to perform the weight adaptation.

V. GENETIC ALGORITHMS FORREDUCING IRON LOSSES

In this section, we describe the algorithm used for optimal
arrangement of the individual cores so that the iron losses of
all constructed transformers are as minimal as possible. In par-
ticular, in the following subsection the problem formulation is
presented while Section V-B describes the genetic algorithm,
which is applied for the optimization. Finally, Section V-C dis-
cusses issues related to the genetic algorithm convergence.

A. Optimization of Core Grouping Process

Let us denote as a vector containing one possible combina-
tion of the three-phase transformers, , that
can be constructed by the available small/large cores

(24)

where indicates the transpose of a vector.
Vector is of dimensions since each transformer

is represented by a 4 1 vector as (1) indicates. A specific ar-
rangement (combination) of all small and large cores, for con-
structing the three-phase transformers, corresponds to a given
value of vector . Therefore, any reordering of the elements of
vector results in different arrangement of individual cores, i.e.,
different three-phase transformers. Fig. 9 presents an example of
vector in case that six small and six large cores are available.
In particular, the serial numbers from 1 to 6 correspond to small
cores, while the numbers from 7 to 12 to large cores. A randomly
selected arrangement of these cores is also presented in Fig. 9
for constructing three different transformers. For example, the
first transformer consists of the small cores with labels 5 and 1
and of the large cores with labels 10 and 12. This is represented
by the vector [5 10 12 1] in accordance with (1). Then, vector

is constructed by concatenating the vectors of the three trans-
formers. The core arrangement for the other two transformers is
generated accordingly and depicted in Fig. 9.

It is clear that the estimation of N transformers with optimal
quality (minimum iron losses) is equivalent to the estimation of
vector , which minimizes the following:

(25)

where is a vector which contains the optimal arrangement
of all available small/large cores so that the actual losses over
all transformers are minimized.

Fig. 9. Example of the adopted encoding scheme in case of six large and six
small cores.

The transformer actual losses involved in (25) are estimated
by the neural network architecture as has been described in the
previous section. However, although the previous equation pro-
vides transformers of optimal quality, there is no guarantee that
all the generated transformers belong to the acceptable class [see
(22a)]. For this reason, a very large value is assigned to a trans-
former whose predicted iron losses satisfy (22b) (or are slightly
smaller to compensate prediction errors). Thus, any unaccept-
able core arrangement is rejected.

As observed from (25), estimation of the optimal core
arrangement results in a global combinatorial optimization
problem. Consequently, the previously used feedforward neural
network cannot be directly applied for minimizing (25). This
is due to the fact that a feedforward neural network is usually
suitable for function approximation or classification but not
for function minimization. However, other neural networks
models, like Hopfield networks or Boltzmann machines, trained
based on the simulated annealing algorithm, can be used to find
the optimal value [26, pp. 125–131, 279–301].

GAs can be also applied [27], [28]. The main advantage
of these GA schemes is that they simultaneously proceed
multiple stochastic solution trajectories and thus allow various
interactions among different solutions toward one or more
search spaces [29, p. 102], [27]. On the contrary, the neural
network approaches normally follow one trajectory (deter-
ministic or stochastic) which is repeated many times until a
satisfactory solution is reached. Furthermore, neural networks
can be applied more appropriately for functions whose the
variables are in product form, which is not held in our case. In
the following, a genetic algorithm is proposed to perform the
aforementioned minimization. Table IV summarizes the main
steps of the proposed method for reducing the transformer iron
losses.

B. Genetic Approach

In the genetic approach, possible solutions of the optimiza-
tion problem are represented by chromosomes whose “genetic
material” corresponds to a specific arrangement of individual
cores. This means that vectorof (24) is represented by a chro-
mosome, while the serial numbers of individual cores are con-
sidered as the genetic material of the chromosome. An integer
number scheme is adopted for encoding the chromosome ele-
ments (genes) as is illustrated in Fig. 9.
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TABLE IV
SUMMARY OF THE MAIN STEPS OF THEPROPOSEDCOMBINED NEURAL NETWORK–GENETIC ALGORITHM SCHEME FORIRON LOSSREDUCTION

Initially, different chromosomes, say are cre-
ated to form a population. In our case, possible solutions of
the grouping method used in the current practice are selected
for the initial population. This is performed so that the genetic
material of the initial chromosomes is of somehow good quality
and thus fast convergence of the GA is achieved. The perfor-
mance of each chromosome, representing a particular core ar-
rangement, is evaluated by the sum of the predicted actual iron
losses of all transformers corresponding to this chromosome.
The neural network model is used as iron loss predictor. For each
chromosome, afitness functionis used to map its performance
to a fitness value, following arank-based normalization scheme.
In particular, all chromosomes are ranked in
ascending order according to their performance, i.e., the sum of
the predicted transformer losses. Letrank

be the rank of chromosome (rank= 1 corresponds to the best
chromosome andrank= to the worst). Defining an arbitrary
fitness value for the best chromosome, the fitness of
the th chromosome is given by the linear function

rank (26)

where is a decrement rate and is computed in such a way that
the fitness function takes always positive values, that is

. The major advantage of the rank-based nor-
malization is that it prevents the generation ofsuper chromo-
somes, avoiding premature convergence to local minima, since
fitness values are uniformly distributed [27], [30].

The parent selection mechanism then begins by selecting ap-
propriate chromosomes (parents) from the current population.

The roulette wheel[28] is used as the parent selection proce-
dure. This is accomplished by assigning to each chromosome
a selection probability equal to the ratio of the fitness value of
the respective chromosome over the sum of fitness values of all
chromosomes, i.e.,

(27)

where is the probability of the chromosome to be se-
lected as parent. Equation (27) means that chromosomes of high
quality present higher chance of survival in the next genera-
tion. Using this scheme,M chromosomes are selected as candi-
date parents for generating the next population. Obviously, some
chromosomes would be selected more than once which is in ac-
cordance with the Schema Theorem [28]; the best chromosomes
get more copies, the “average” stay even, while the worst die off.
Consequently, each chromosome has a growth rate proportional
to its fitness value.

In the following step of the algorithm, couples of chromo-
somes (two parents) are randomly selected from the set of
candidate ones, obtained from the parent selection mecha-
nism. Then, their genetic material is mated to generate new
chromosomes (offspring). The number of couples selected
depends on a crossover rate. A crossover mechanism is also
used to define how the genes should be exchanged to produce
the next generation. Several crossover mechanisms have been
reported in the literature. In our approach, a modification of the
uniform crossover operator[27], [28] has been adopted. As is
explained in the following section, this modification does not
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Fig. 10. Example of the proposed modification of the crossover operator.

spoil the GA convergence. In this case, each parent gene, i.e.,
an individual core, is considered as a potential crossover point.
In particular, a gene is exchanged (undergone crossover), if a
random variable, uniformly distributed in the interval [0 1], is
smaller than a predetermined threshold. Otherwise, the gene
remains unchanged. It is possible however for an individual
core to appear more than once in the genetic material of the
generated chromosome. This means that one individual core
is placed to more than one transformer or to more than one
position of the same transformer, which corresponds to an
unacceptable core arrangement in (2). For this reason, the
following modification of the uniform crossover operator is
adopted. After the exchange of one gene between the two
parents, it is highly possible that the gene appears twice in the
chromosome. In this case the gene coinciding with the new
gene is replaced with the gene before the exchange. Fig. 10
illustrates an example of the proposed crossover mechanism in
case that six small and six large cores are assembled to generate
three transformers. In this example, the two parents exchange
their genes only between the crossover points 2, 3, and 4 for
simplicity. As observed, the genes of the first parent
are exchanged with the genes of the second parent.
By applying this exchange of genes, in the first chromosome
the genes 8 and 3 appear twice, while genes 10 and 1 disappear.
An equivalent problem occurs in the second chromosome.
For this reason, in the first chromosome the genes are
one-by-one exchanged with genes as Fig. 10 depicts.
The same happens for the second chromosome.

The next step is to applymutationto the newly created pop-
ulation, introducing random gene variations that are useful for
restoring lost genetic material, or for producing new material
that corresponds to new search areas [28].Uniform mutation
is the most common mutation operators and is selected for our
optimization problem. In particular, for each gene a uniform
number is generated into the interval [0 1] and if this number
is smaller than the mutation rate the respective gene is swapped
for other randomly selected gene of the same category, i.e., small
or large core. Otherwise, the gene remains unchanged. In our
experiment, the mutation rate is selected to be 5%. Swapping
genes of the same category is necessary for creating valid core
arrangement.

At each iteration, a new population is created by inserting the
new chromosomes, generated by the crossover mechanism, and
deleting their respective parents, so that each population always

consists of chromosomes. Several GA cycles including fit-
ness evaluation, parent selection, crossover, and mutation are
repeated, until the population converges to an optimal solution.
The GA terminates when the best chromosome fitness remains
constant for a large number of generations, indicating that fur-
ther optimization is unlikely.

C. GA Convergence

The aforementioned modifications of the crossover and mu-
tation operators do not effect the convergence property of the
GA. To show this, an analysis is presented in the following, by
modeling the GA as a Markov chain. In particular, each state of
the Markov state corresponds to a possible solution of the GA,
i.e., a specific vector c. Let us denote asa set, which contains
all possible Markov states. Then, for two arbitrary states, say,

, we denote as the transition probability from state
to state . Gathering transition probabilities for all states in,
the transition matrix of the chain is formed as . Since
in the GA, transition from one state to another is obtained by
applying the crossover and mutation operator, matrixcan be
decomposed as follows [31]:

(28)

where matrix indicates the effect of crossover operator and
matrix the effect of mutation operator.

Let us denote as the elements of matrix . The
express the transition probability from state to the

state , if only the effect of the crossover operator is
taken into consideration. Since the crossover operator proba-
bilistically maps any state of to any other state of , matrix

is a stochastic matrix. More specifically, a matrix is said to
be stochastic if its elements satisfy the following property:

Matrix is stochastic. (29)

The previous equation means that from a valid solution (i.e.,
a state of ), the crossover operator produces another valid so-
lution (i.e., another state of ). This is exactly happened with
the proposed modification of the crossover operator, since only
valid solutions are permitted.

On the other hand, matrix is positive. This is due to the
fact that the mutation operator is applied independently to each
gene of a chromosome. Furthermore, each gene can potentially
undergo mutation. Consequently, the elements of matrix

, which express the transition probabilities from state
to state taking into account only the effect of the mutation
operator, are strictly positive:

Matrix is positive. (30)

It has been proven in [31] that if matrix is stochastic and
matrix is positive, the transition matrix [see (28)]
of the Markov chain is primitive (i.e., there exists :
is positive). In this case, it has been shown in [31] that the GA
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TABLE V
NUMBER OF DATA INCLUDED IN THE TRAINING, VALIDATION , AND TESTSET

FOR ALL THREE ENVIRONMENTS

converges to the optimum solution if the best solution is main-
tained over time. This means that, starting from any arbitrary
state (valid solution), the algorithm visits any other state (valid
solution) within a finite number of transitions.

VI. RESULTS

In this section, we analyze the results obtained by applying
the proposed neural network-genetic algorithm scheme to a
manufacturing industry following the wound core technology.
In particular, Section VI-A presents the performance of the
neural network architecture as an accurate predictor of trans-
former iron losses, while Section VI-B indicates the iron loss
reduction which is achieved using the combined neural-ge-
netic scheme. Finally, Section VI-C discusses the economic
advantages that arise by the use of the proposed scheme to the
examined manufacturing industry.

A. Iron Loss Prediction

To predict transformer iron losses, we initially construct three
industrial measurement sets (MSs), each of which corresponds
to a specific environment. In particular, the measurement set of
the first environment comprises 2240 actual industrial samples
(transformers), while the set of the second and third environ-
ment 2350 and 1980 samples (transformers), respectively. Each
sample is a pair of the eight attributes selected by the DT, (see
Table III) and the associated actual specific iron losses of the
transformer. The measurement set of each environment is ran-
domly partitioned into three disjoint sets:

1) the training set;
2) the validation set;
3) the test set.

The training set is used to estimate the network parameters (i.e.,
weights), the validation set to terminate network training (see
Section IV-A), while the test set to evaluate the network ac-
curacy. Table V presents the number of data included in the
training, validation and test set for the three examined environ-
ments.

Fig. 11 illustrates the network performance versus the number
of hidden neurons over all data in the training and validation set
for the first environment. In our case, the network performance
is evaluated by the average absolute relative prediction error,
which is defined as follows:

(31)

Fig. 11. Network performance, expressed in absolute relative error, versus the
number of hidden neurons over data of training and validation set for the first
environment.

Fig. 12. Comparison of the network performance, expressed in absolute
relative error, versus the number of hidden neurons over data of the validation
set in case that one and all environments are used.

where we recall that are the actual (measured) specific iron
losses of transformer and the predicted ones in case that
the number of hidden neurons of the network is equal.

As is observed, the error on training set decreases monoton-
ically for an increasing number of hidden neurons. Instead, the
error on validation set decreases until eight hidden neurons are
added and then it starts to increase. This is called early stop-
ping point (eight hidden neurons) and is depicted in Fig. 11.
When we look at the “training” curve (solid line), it appears that
we could improve the network performance by using more than
eight hidden neurons. This is due to the fact that the proposed
constructive algorithm estimates the new network weights so
that the output of the new added neuron compensates the current
residual error [see (18)– (20)]. As a result, the error over data of
the training set is driven to fall. In reality, however, what the net-
work is learning beyond the early stopping point is essentially
noise contained in the training data. For this reason, the “valida-
tion” curve (dotted line) increases beyond this point, indicating
that the generalization performance of a network with more than
eight hidden neurons begins to deteriorate, since overfitting of
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Fig. 13. Fractile diagram of transformer specific iron losses for the first
environment.

TABLE VI
TRANSFORMERIRON LOSSPREDICTION USING THE LOSSCURVE

AND THE NEURAL NETWORK METHOD

the training data is accomplished. As a result, eight hidden neu-
rons are selected for the neural network associated to the first en-
vironment. Similar prediction accuracy is observed for the net-
works corresponding to the other two environments, where the
most appropriate number of hidden neurons is estimated to be
eight and nine, respectively.

The prediction accuracy of the neural network versus the
number of hidden neurons when we mix data of all examined
environments in the validation set, is depicted in Fig. 12 (dotted
line). In this case, the environment type is fed as additional
input (attribute) to the neural network. The absolute relative
error obtained using data only of the first environment is also
plotted in this figure for comparison purposes. As is observed,
smaller prediction error is achieved if the network has trained
using data of the same environment.

Fig. 13 presents the fractile diagram or the Quantile–Quantile
plot [32] of the specific iron losses for the first environment. In
this figure, the real (measured) specific iron losses are plotted
versus the predicted (by the loss curve and the neural network)
specific iron losses. Perfect prediction lies on a line of 45slope.
It is observed that the prediction provided by the neural network
(dotted line in Fig. 13) is closer to the optimal line of 45than
the loss curve prediction (solid line in Fig. 13).

Table VI presents the average absolute relative error on test
set, for the three environments considered. In all cases, the
neural network improves the prediction accuracy by more than
65%.

Despite the very good performance of the neural network in
predicting iron losses, its application during transformer con-
struction must be monitored. The reason is that during the man-
ufacturing, the conditions to which the neural network has been
trained may change. The way of monitoring the performance of
the neural network is to define an upper limit for the average

Fig. 14. Evolution of average absolute relative error through various
production batches before the adaptation of the neural network weights.

Fig. 15. Evolution of average absolute relative error after the adaptation of the
neural network weights.

absolute relative error. If the average error of a production batch
is above this limit then the weight adaptation mechanism is ac-
tivated and the neural network is retrained using the algorithm
described in Section IV-C. For example, Fig. 14 shows the av-
erage absolute relative error for various production batches of
the first environment, the average error on the test set and the
upper limit of the average error. More specifically the average
error on the test set is equal to 0.95% as given in Table VI and
the upper limit is set 10% above the average error of the test
set, i.e., the upper limit is 1.045%. It is observed that at the 19th
production batch the average absolute relative error exceeds the
defined upper limit of 1.045%. Consequently, the weight adap-
tation mechanism is activated. After adaptation, the average ab-
solute relative error on the test set is 0.94% and the new upper
limit is set to 1.034%, i.e., 10% above the average error of the
test set. Fig. 15 presents the average absolute relative error for
various production batches after the adaptation of the neural net-
work weights. It is observed that for the following 11 production
batches the average absolute relative error is within the tolerated
interval.

B. Iron Loss Reduction

The proposed GA-based grouping process was used in order
to group 100 small and 100 large cores of the same production
batch of 50 transformers, 100 kVA and 50 Hz of first environ-
ment.

Fig. 16 shows the minimum value, over the whole popula-
tion, of the total predicted iron losses of the best chromosome
versus the cycle (or generation) of the GA. The total predicted



30 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 31, NO. 1, FEBRUARY 2001

Fig. 16. GA convergence: total iron losses versus the GA cycle.

Fig. 17. Evaluating the performance of the GA for a production batch of the
first environment.

iron losses decrease as the GA cycle increases, until it reaches
a minimum value of 10 846 W at 86th generation.

The output of the genetic algorithm grouping process is not
only the minimum value of the total predicted iron losses of the
best chromosome (i.e., 10 846 W for the example of Fig. 16)
of the 50 transformers. It also provides for each one of the 50
transformers the optimal core arrangement and the associated
predicted iron losses.

Fig. 17 evaluates the performance of the GA comparing the
predicted with the actual iron losses (measured after the trans-
former construction) for each one of the 50 transformers, for the
example of Fig. 16. In this case, theaverageabsolute relative
error is equal to 1.03%. Fig. 18 confirms the very good perfor-
mance of the GA in the other two environments considered. In
this case, the average absolute relative error is 0.95% and 1.17%,
respectively.

C. Exploitation of the Results

The proposed combined neural network-genetic algorithm
approach has been coded in a genetic algorithm neural network
(GANN) toolbox and is currently used in the considered indus-
trial environment. Using appropriate data acquisition systems,
measurements are collected and fed to the GANN toolbox as
well as to a statistical processing and graphical visualization
toolbox.

The application of the combined neural network-genetic al-
gorithm provides significant economic advantages for the trans-
former manufacturer. More specifically, it helps a) to reduce

(a)

(b)

Fig. 18. Evaluation of the GA in the other two considered environments:
(a) production batch of 50 transformers, 160 kVA, 50 Hz of the second
environment and (b) production batch of 60 transformers, 250 kVA, 50 Hz, of
the third environment.

transformer iron losses, b) to reduce the cost of materials, and
c) to avoid paying loss penalties.

Fig. 19 shows the iron loss distribution of a production batch
of 50 transformers, 160 kVA, into two different periods. In pe-
riod 1, the method of grading into quality classes is used as
grouping process, while in period 2, the proposed neural net-
work-genetic algorithm is applied. In both periods, the trans-
former specification is the same and the desired (guaranteed)
no-load losses are 315 W.

Since large deviations in iron losses were observed in period
1, the designed iron losses were 296 W, namely 6% lower than
the desired iron losses. On the other hand, in period 2 the iron
loss deviations were much lower and therefore the designed iron
losses could be raised to 311 W, that is, 1.3% lower than the
desired iron losses.

From Fig. 19 it can be concluded that the iron loss results
of period 2 are by far better than the results of period 1. More
specifically, the variation of iron losses is smaller (23.6 W for
period 2, instead of 48.5 W for period 1) and the mean value
of iron losses (313.15 W, instead of 307.31 W) is closer to the
desired iron losses. The results of Fig. 19 are summarized in
Table VII.

The results presented in Fig. 19 and Table VII have been
confirmed for a large number of transformer constructions.
Table VIII presents the evolution of the average absolute
relative error of iron losses for the two different periods. In
this case, the average absolute relative error is defined by
the difference of the designed iron losses from the desired
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(a)

(b)

Fig. 19. Iron loss distribution of 50 transformers, 160 kVA. (a) Grading into quality classes is used as grouping process (Period 1) and (b) the proposed GA is
used as grouping process (Period 2).

TABLE VII
IRON LOSSRESULTS OF50 TRANSFORMERS INTOTWO DIFFERENTPERIODS

TABLE VIII
EVOLUTION OF AVERAGE ABSOLUTE RELATIVE ERROR INTO TWO

DIFFERENTPERIODS

losses. Each of the periods corresponds to a different grouping
process of cores (period 1 refers to the “quality class” grouping
method, while period 2 to the proposed neural network-genetic
algorithm).

The proposed scheme leads to reduction of the produc-
tion cost. Let us assume that it is required to construct 50
kVA transformers with 131 W guaranteed losses. In period
1, a 6.0% safety margin was satisfactory, and the transformer
was calculated to have 123 W designed losses. In period 2
the transformer is evaluated to have 129 W designed losses
(safety margin 1.5%). The ability for the reduction of the
safety margin between the designed and the desired iron
losses offers significant savings of magnetic material. More-
over, the reduction of the weight of the magnetic material
leads to the construction of transformers of smaller dimen-
sions. The latter results in the reduction of the weight of the
material of the windings (copper), insulating materials and
transformer oil.
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TABLE IX
COMPARISON OF THECOST OFMATERIALS FOR THESAME GUARANTEED LOSSES

Fig. 20. Reduction of the cost of materials of two different 50 kVA transformer designs.

TABLE X
COMPARISON OF THECOST OFMATERIALS INTO TWO DIFFERENTPERIODS

Table IX shows the reduction of transformer cost achieved in
period 2 in relation to the period 1 for the 50 kVA transformer
design. For both periods the cost of materials is considered to be
$1 746/Kg for the magnetic material, $3 175/Kg for the copper
and the insulating materials, and $571/Kg for the transformer
oil. The cost reduction results are presented in Fig. 20.

Table X presents the reduction of the cost of materials
achieved for transformers of 100, 160, and 250 kVA for period
2 in relation to period 1. In this table, the cost of each one of
the materials is expressed as a percentage of the respective cost
of period 1.

From Table X, it can be seen that for the three different types
(kVA) of transformer designs an approximately 3.0% reduction
of the cost of the four main materials of transformer is achieved.

This reduction is significant since the four above-mentioned ma-
terials represent about the 75% of the total cost of transformer
materials.

VII. CONCLUSION

In this paper, neural networks are combined with GAs in order
to reduce transformer iron losses. More specifically, neural net-
works are used to predict iron losses of the wound core type
transformers prior to their assembly. Each of the neural net-
works is suited to a different environment, i.e., to a certain sup-
plier, grade, and thickness of magnetic material. The prediction
is based on measurements on the individual cores taken at the
early stages of transformer construction. Furthermore, the GAs



GEORGILAKIS et al.: NOVEL IRON LOSS REDUCTION TECHNIQUE 33

are used in combination with neural networks in order to reduce
the transformer iron losses. Application of the proposed artifi-
cial intelligence framework to a transformer manufacturing in-
dustry has verified the accuracy of the prediction in all the ex-
amined environments and reduction of the transformer losses
has been achieved. These results provide significant economic
gains to the transformer manufacturer.
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