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Abstract—This paper presents an effective method to reduce optimal design method, it is necessary to determine which of
the iron losses of wound core distribution transformers based on a the two losses should be minimized. Usually, the transformer
combined neural network- genetic algorithm approach. The origi- sers (e.g., electric utilities) specify a desired level of iron

nality of the work presented in this paper is that it tackles the iron | teed | to det ine the t f lit
loss reduction problem during the transformer production phase, '0SS€S (guaranteed losses) to determine the transformer quality.

while previous works were concentrated on the design phase. More This is due to the fact that the accumulated iron losses in a
specifically, neural networks effectively use measurements taken distribution network are high since a large amount of distribu-

at the first stages of core construction in order to predict the iron  tion transformers is involved. In addition, iron losses appear 24
losses of the assembled transformers, while genetic algorithms hours per day, every day, for a continuously energized trans-

are used to improve the grouping process of the individual cores f Th itis i | ferable to desi ” f
by reducing iron losses of assembled transformers. The proposed ormer. thus, itis in general preterable to design a transformer

method has been tested on a transformer manufacturing industry. at minimum iron losses [2] and this is addressed in this paper.
The results demonstrate the feasibility and practicality of this Initially, transformers are designed so that their iron losses are

approach. Significant reduction of transformer iron losses is ob- gqual (with perhaps a safety margin) to the guaranteed ones. In
served in comparison to the current practice leading to important - . +tice however, transformer actual iron losses deviate from
economic savings for the transformer manufacturer. N ’ . .
_ o _ the designed (theoretical) ones due to constructional defects,
Index Terms—Core grouping process, decision trees, genetic al- which appear during the production phase. Reduction of trans-
gonthrr;(s, intelligent core loss modeling, iron loss reduction, neural former actual losses, by minimizing the effect of constructional
networks. - ! L
defects, is a very important task for a manufacturing industry.
In particular,

. INTRODUCTION 1) it increases the reliability of the manufacturer;

N today’s competitive market environment, there is an 2) itreduces the material cost, since smaller safety margin is
urgent need for a transformer manufacturing industry to  used during the transformer design phase;
improve transformer efficiency and to reduce cost, since high 3) it helps the manufacturer not to pay loss penalties.
quality, low cost products have become the key to survivafhe latter occurs in case the actual transformer losses are
Transformer efficiency is improved by reducifmpd andiron  greater (usually 15%) than the guaranteed ones. In general, it
losses To reduce load losses, the designer can do one or migelear that manufacturers, who are able to offer transformers
of the following: use lower loss conductor materials or decreasgbetter quality (lower losses) at the same price, will increase
the current path length or the current density. On the othgieir market share.
hand, the designer can reduce iron losses by using lower losSeveral works have been proposed in the literature for the
core materials or reducing core flux density or flux path lengiéstimation of transformer iron losses during the design phase.
[1]. In general, attempts to reduce load losses cause increasglidse approaches can be grouped into two main categories.
iron losses and vice versa [1]. As a result, before deciding tifge first group is based on the arithmetic analysis of the elec-
tromagnetic field of the transformer cores, while the second
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two-dimensional (2-D) finite difference method. Three-dimen  Small Core Large Core Large Core Small Core
sional magnetic-field calculations are performed in [5] to eval
uate several transformer parameters, while in [6] the effects of —— ———
number of core production attributes on core loss performani
have been examined. Other works, in this category, model thre
phase transformers based on the equivalent magnetic circuit
their cores [7], [8].

In the second approach, experimental curves are usually €
tracted using a large number of measurements to investigate-
effect of several transformer parameters oniron losses [2]. How-
ever, due to the continuous evolution both of technical charactefg. 1. Assembled active part of a wound core transformer.
istics of the magnetic materials and the design of cores, the ex-

perimental curves should systematically be reconstructed wheq.his paper is organized as follows. Section Il describes the
data change. Alternatively, linear or simple nonlinear mode|

. . Current practice for estimating iron losses and for grouping the
are used in order to relate transformer iron losses to the Madivi . .
individual cores. Section Il presents a general overview of the

Fge]t'([:llg]d UTCr?gn Zgﬁ;ggi??ﬁég?ﬁgg;;O;f?i;g?{;iﬁcb?g%fosed method. Section IV presents the prediction of iron
B P es using neural networks. In particular, in this section we

. . [0
on experimental observations. However, these methods provb%%cribe the constructive algorithm used to train the network,
%e method applied for attribute selection and the weight adap-

satisfactory results only for data (transformers) or conditions
which they have been estimated. Their performance deterior. esn algorithm used for improving the network performance,
ction V presents the reduction of iron losses using a GA. In

severely in case of new samples, which are not included in t 8

training” set. this section, we also discuss issues related to the GA conver-

Although, all the aforementioned approaches (theoretical &Ence. Finally, Section VI shows the results and economic ben-

gxperimental) prov'ide a sufficient. frameworlf for the CaICUI"JEfits obtained from the application of the proposed techniques
tion of transformer iron losses during the design phase, they iﬁo

not take into account the effect of constructional defects, whicha transformer industry. Section Vil concludes the paper.
cause the deviation of the actual losses from the theoretical O”Gﬁ' CURRENT PRACTICE FORPREDICTING IRON LOSSES AND
More specifically, it has been found that the maximum diver-"
gence between the theoretical and actual iron losses of a specific
production batch could as high #910%. These deviations are A three-phase wound core distribution transformer is con-
to a great extent attributed to the deviations of the actual catucted by assembling two small and two large individual cores,
characteristics from the designed ones. For example, the mageording to the arrangement described in Fig. 1. In particular,
imum deviation of the iron losses of the individual cores calhe four cores are placed as follows: a small core, followed by
reach up ta15%, while the maximum deviation of the coretwo large cores, followed by another small core (from left to
weights up to£1.5% [12]. right). The window width of large cores is twice of the width of

In this paper, reduction of transformer iron losses is achievéthall cores. Based on the previous arrangen€rihree-phase
during the transformer production phase. In particular, dransformers are constructed fram N small and2 « IV large
optimal method is presented to estimate the most appropriéitdividual cores. Let us denote a5 (V;) the set of all2 = N
arrangement of individual cores, which yields transformers Mmall (large) cores. A transformer is represented by a vegtor
minimum actual iron losses. This is achieved by compensatititg elements of which corresponds to the four individual cores
the constructional defects, which appear in the productidhat assemble the transformer
phase. The method is relied on a combined neural network-ge-
netic algorithm (GA) scheme. The goal of the neural network t = [si 10 175" (1)
architecture is to predict transformer actual losses prior to their )
assembly. For this reason, several measurements (attributes) aM@fiabless, s7 € V, represent the left and right small core of
obtained during the transformer production phase. A decisiansformett;, whilel{, I € V; the left and right large core, re-
tree methodology is adopted next to select the most significaRectively. Since only one core (small or large) can be assigned
attributes, which are fed as inputs to the neural network. {& one transformer and one position (left or right), the following
genetic algorithm is finally applied to estimate the optimd@strictions are held:
arrangement of individual cores that assemble a transformer. In . . .
our case, optimality means that the iron losses of all constructed si#si, L7l (2a)
transformers in a production batch should be as minimal as s,‘El”’} #s;{l”’}, Z,EI”’} + ljl”’}, with &k #£i (2b)
possible. The genetic algorithm exploits information provided
by the neural network architecture to perform the minimizatiomheresi[l”’} (li[l”’}) indicates the small (large) core in the left or
task. In particular, the network predicts the transformer qualitight position for the transformes. In the following subsection,
(iron losses) of a given core arrangement. The proposed schemeeanalyze how the iron losses are estimated in current practice,
has been applied in a transformer manufacturing industry antlile Section 11-B presents the current core grouping process,
the results reveal a significant economic benefit. used to assemble a transformer.

Coils

GROUPING INDIVIDUAL CORES
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22 The total theoretical (design) losses of the four individual
@ 1.8 e cores assembled to construct the transfortpare given by
g 14 e
2 Transformer —.-" - Fl=2+(P!+ P (6)
2 1.0 e
'3 0.6 BN / where P4, P are the theoretical (design) iron losses of small
S - \ Core and large individual cores, Whilng represents the theoretical
r}g; 0.2 (design) total iron losses of the four individual cores pfThe

10000 12000 14000 ~ 16000 18000 20000 theoretical (design) iron losses of the four individual cores can

B (Gauss) be computed based on their loss curve (solid line of Fig. 2) at the
rated magnetic induction used for the three-phase transformer. It
Fig. 2. Typical loss curve, which is used in the examined industridhould be mentioned that the total ironlosﬁﬁ;fsare not equal to
environment. the transformer iron lossé§’ since additional losses in general
appear during the assembly of the four individual cores, i.e.,
A. Core Loss Estimation F¢ < P2

Iron losses constitute one of the main parameters for deter-
mining the transformer quality. Usually, customers’ specifica-"
tions define an upper limit, sak, concerning transformer iron  Although all transformers constructed under the same de-
losses. For this reason, the transformer is designed [13] so tbigh should present the same iron losBgs their actual losses,
its theoretical (design) iron lossé¥’ are less or equal to thesay Fy: usually diverge from the designed ones. This is due to
specified loss limitFy: the fact that several parameters, involved in the construction

process, such as the formation of individual cores, the condi-

Pt‘f_ <1 -m)P (3) tions of transformer production, and the quality of magnetic

material, affect the final transformer quality. Thus, it is pos-
wherem corresponds to the safety margin used during the trangble for the actual iron losses of a transformer to exceed the
former design. upper loss limitPy. The same happens with the actual losses

In current practice, the typical loss curve is used to estimag¢individual cores, which in general differ from the designed
the theoretical iron IosseBgf_ of the transformex,;. The loss ones. In the following, we denote a¥ (P%) the actual iron
curve expresses the relationship between specific iron losgg$ses of a large (small) individual core from alk N avail-

S¢, i.e., losses normalized per weight unit (in W/Kg) versugple large (small) cores. Therefore, random assembly of two
magnetic inductionB (in Gauss). A typical loss curve used insmall and two large cores to form a three-phase transformer
the considered industrial environment is depicted in Fig. 2 gfay resultin transformers of significant deviation from their de-
the dotted line. The design iron lossEg of the transformet;  signed quality. In particular, grouping together only cores of low
are estimated by multiplying specific iron loss¥, calculated quality constructs transformers of unacceptable quality. For this
from Fig. 2 at a given rated magnetic induction, by the theor&ason, a grouping process of individual cores is performed by

Core Grouping Process

ical (design) total core weighf({’ , of transformet; : assembling cores of high and low quality together. In this way,
4 4 4 cores of low quality are compensated with cores of high quality
P, = 5, = K¢, (4)  toreduce the deviation of transformer actual losses from the de-
. . . . signed ones. In current practice, the following grouping method
The theoretical core weight of transfornt@n.e.,K‘{_ ,is cal- isgused P g grouping

culated from the theoretical weights of its four individual cores. Initially

i individual cores (small or large) are classified into
That is

“quality classes” according to the deviation of their actual losses
from the designed ones. In particular, the quality classes for

d _ d d
Ki =2 (K5 + K7 ) small/large cores are defined as follows:

whereK¢ andK{ are the theoretical weights of small and large

L — . _ d a,
cores. Cr={seV,: (1+(2k-1)8)P! < P;

The theoretical weights of individual cores depend on their <(1+(2k+ 1)) P}, k=-3-3 (7a)
geometrical dimensions (i.e., width and height of core window, CL={leVi:(1+(2k-16P < P?
thickness and width of core leg), the core space factor and the <1+ (2k+1)6)P?}, k=-3.--3 (7b)

rated magnetic induction, as described in [14]. The magnetic
induction is the same as the one used for the three-phase travisere seven “quality classes” are assumed.Zheorresponds
former to estimate the specific lossg$ based on the curve of to the class width an®¢, P are the theoretical iron losses of
Fig. 2. a small/large core as it has been defined in the previous sub-
Based on the above, various transformer parameters, whagttion. Positive values of indéxcorrespond to cores with ac-
affect the theoretical transformer weight and its specific iramal iron losses greater than the designed ones. On the contrary,
losses, are examined and the design which satisfies the ausgative values indicate actual losses smaller than the designed
tomers’ requirements (3) at a minimum cost, is selected as thiges. Consequently, as the indexncreases, the core quality
most appropriate. decreases and vice versa. Cores belonging to the class of zero
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index, i.e.,Cg or C}, present actual iron losses close to the the- Design Phase
oretical ones within a deviation afé. :
. . . . . . Customer Techno-economical
A grade is assigned to each class indicating its quality, so Requirements Criteria

that all cores of a class are characterized by the same quality
grade. Since the class indéxis inversely proportional to the
core quality, the negative index of the respective class is defined
as its grade

ransTormer
Design

oTe Production

9(3) =—k, if P} eCy (8a) Construction Phase
ol) =—k, if PTeCt (8b)

Core Supplier

Measurements |
I Data

where we recall that € V,, andl € V; is a small/large core
from all 2 « IV small and2 = N large available.

Based on the quality grade of each individual core, a grouping
process is applied to reduce the deviation of the actual iron
losses of the constructed transformers. In particular, cores of

GA-NN Grouping
Process

Prediction of
high and low quality grades are assembled together to prevent Transformer Iron losses
production of transformers with very low or too high quality. /
.. . . T Optimal
This is accomplished by selecting the four individual cores, Arrangement
st st 17, 1L, comprising the transformes, so that the sums of of Cores
the quality grades of the two small and two large cores are close
to zero, that is
- . - . Neural Network Evaluation Construction
g(si) + 9(3;) =0, g(If)+ Q(iz) =0 Weight Adaptation Phase Transformer Phase
Vsi,s, €V, and VI, Il eV 9 Coastruction
or equivalently is held that No s Network Ironlloss
Performance < M
d a d cceptable easurements
(1-0)r¢ < I < (14 6)I¢ (20)

whereF? represents the total actual losses of the four individual

cores assembled to construct th? transfortneEquation (10) Frig. 3. Proposed combined neural network-genetic algorithm method applied
indicates that the average actual iron losses of the two small derdron loss reduction.

two large individual cores for all transformersare close to the

theoretical ones with an uncertainty intervaligh, i.e., the class are specified, such as the geometric characteristics of individual

width. : . . .
. o _ cores, the thickness, grade and supplier of magnetic material,
In the above method, the quality of individual cores is use g PP 9

to indicate th litv of th h i f H d the rated magnetic induction. Then, the individual cores are
0 Indicate the quality ot three-phase transtormers. HOWEVRE i, cted and several measurements are taken for each core to
the actual losses of a transformer are not equal to the Iosse§1 8?

its individual This is due to the fact that additional ermine the core performance. Next, a combined neural net-
IS Individual cores. 1his 1S due 1o the Tact that additional pagq . 55 genetic algorithm approach is used to estimate the
rameters appear during the transformer construction, like t

exact arrangement of the four individual cores, which are Etimal core arrangement which results in three-phase trans-
9 ’ mers of minimum iron losses. More specifically, the mea-

cons@ered by the above-mentioned technique. For example’gﬁr'ements taken from the core construction phase, as well as ad-
ordering the two small or the two large cores of a transform

2 7 . itional parameters, affecting the transformer quality, are used
results in different actual iron losses though the average Ios§

. gf)redict the actual iron losses of the transformer. The predic-
of the four coresremain the same. Another dr_awback of _the CWon is accomplished through a neural network that relates all the
rent grouping process is that it does not provide the optimal

%rérameters, called attributes, with the actual transformer losses.
_rangement of the « & small and2 + IV large cores so t_h"f‘t theA new grouping process is then applied to minimize the iron
ron I_osses of theV constructed transformers are as minimal Ysses of all constructed transformers by the available small and
possible. large cores. In general, the number of core combinations is ex-
tremely large for a typical number of small/large cores. For that
reason a genetic algorithm has been adopted to estimate within
In this paper, a novel technique is proposed so tha2th&/  a few iterations the optimal arrangement of the four individual
small and2 « N large cores are appropriately arranged to cogores so that transformers of the best quality are constructed. In
struct transformers of optimal quality. Fig. 3 presents a bloglarticular, at each step, a population of new core arrangements is
diagram of the proposed scheme. First, the transformer desggmerated and prediction of the actual iron losses of the respec-
is accomplished based on customers’ specifications and stwe transformers is accomplished by the neural network model
eral techno-economical criteria as described in Section II-A. tmtil minimal losses are provided for one specific (optimum) ar-
this phase, several constructional parameters of the transformegrgement.

I1l. PROPOSEDMETHOD
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TABLE | by multiplying S‘ﬁ_ by the sum of the actual weights of the four
THREE ENVIRONMENTS CONSIDERED IN THEEXAMINED MANUFACTURING individual cores that assemble the transformer
INDUSTRY Selection of the most appropriate environment is performed
Environment during the design phase, where the type of the magnetic material
#3 and the respective supplier are determined. Consequently, the
environment type is known before the transformer construction.
The neural network structure used to approxintate) is de-
picted in Fig. 4. As is observed, the network consists of a hidden
Thickness (mm) ~ 0.23 0.27 0.23 layer of n neurons,/ input elements and one output neuron.
In our case, a linear output unit is used, since the network ap-
proximates a continuous valued signal, i.e., the specific iron
losses of a transformer. The number of hidden neurgas well
The neural network architecture used for predicting the ags the network weights are appropriately estimated based on a
tual iron losses of a three-phase transformer is analyzed in tbisstructive training algorithm, which is described in the fol-
section. For each transformiy; several attributes are extractedowing subsection. Furthermore, a decision tree (DT) method-
and gathered in a vector, sayt;). This vector is fed as input ology is adopted to select the most appropriate attributes used
to the neural network. However, for different types of magnetigs inputs to the network among a large number of candidates
material and supplier, different relations between the extractedes (see Section IV-B.) Finally, Section IV-C presents a weight
attributes and transformer actual losses are expected. Thisdaptation algorithm used to adapt the network weights in case
due to the fact that each supplier follows a specific technologyat a slight modification of the environment conditions is en-
of magnetic material production, while the grade and thicknessuntered.
present their own characteristics. In the following, the term envi-
ronment is used to indicate a given supplier, thickness and gradeNetwork Training and Generalization Issues

of magnetic ma_terial. Table | pres_ents the three different envi-Te neural network size affects the prediction accuracy. Par-
ronments used in the considered industry. ticularly, a small network is not able to approximate compli-

Letus assume in the following that M environments are avalyteq nonlinear functions, since few neurons are not sufficient
able, denoted al;, ¢ = 1,2,---, M. In this case, M nonlinear , jmplement all possible input-output (1/0) relations. On the

functions, say:.(-) with ¢ € {TI, - - -, II); } are defined which other hand, recent studies on network learning versus general-
relate the attributea(t;) of ¢; with the respective actual spe-jzation, such as the VC dimension [16], [17] indicate that an

cific iron lossesS¢, . That is unnecessarily large network heavily deteriorates network per-

S¢ = ho(a(ts) (11) formance. In this paper, the gonstructive algori'thm, presented in

b AT [18], has been adopted to simultaneously estimate the network

Since functionsh.(-) are actually unknown, feedforwardSize and the respective network weights. Usually, constructive

neural networks are used to estimate them. The use of fe@fProaches presenta number of advantages over other methods

forward networks is due to the fact that they can approximag€d for network size selection. More specifically, in a construc-
any nonlinear function within any degree of accuracy [15, p?ve scheme, it is straightforward to estimate an initial size for

208-213, 249]. In our casé{ feedforward neural networks

Characteristic #1 #2

Supplier SUP.A SUPB SUP.A
Steel grade M3 M4 Hi-B

IV. NEURAL NETWORKS FORPREDICTING IRON LOSSES

he network. Furthermore, in case that many networks of dif-

are implemented, each of which corresponds to a Speciﬁgent sizes provide acceptable solutions, the constructive ap-
environment. A single neural network can be also applidjoach yields the smallest possible size [18].

but using the environment type as additional network input. L€t U denote as. . (-) the function, which implements the
However, such an approach provides greater generalizatlfHral network of Fig. 4, in case thathidden neurons are

error than using! independent networks as is shown in thased. The subscriptis omitted in the following analysis since
section of the experimental results. we refer to a specific environment. If we denoterg§), j =

Let us denote aéc(') an approximate of function.(-) as 1,2,.--,n the function that thgth hidden neuron implements,

is provided by the network. Then the estimate of specific irgen the network output is given as
losses, sayy , of a transformet,; with attributesa(t;) is given

as St = ha(alt) = uri(alt:) (13)
j=1

S¢, = he(alt:))- (12) . . . -
wherew; is the weight, which connects the jth hidden neuron

As can be seen, in (11) and (12), the actual specific irda the output neuron (see Fig. 4) affl ,, the estimate of the
losses (in watts per kilogram) have been used as outputastual specific iron losses provided by a networkrofiidden
the neural network model, instead of the actual iron lossesurons.
(in watts). This selection improves the network performance Based on the neural network structure of Fig. 4, functigr)
(generalization) since normalization of the network outpug written as
is performed per weight unit. Furthermore, neural network
training is made more efficient by using such a normalization . Y — T, alt, .
scheme. Then, the actual transformer iron losses are calculated ri(at:) kz::l Jlwi - a(t) ;) (14)
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Prediction of Transformer
Specific Iron Losses

»
>

Input
Vector <

Fig. 4. Proposed feedforward neural network architecture used for iron loss prediction.

where represents the residual error of the target nonlinear function (ac-
f(-) activation functions of hidden neurons (the sigmoid itual specific iron losses) and the one implemented by a neural
our case); network ofn hidden neurons. In (16), the) corresponds to the
w;  weight vector, which connects th¢h hidden neuron inner product, whilg| - || to the norm.
with the input layer; Based on functional analysis, it has been proven in [18] that
¥;  bias of thejth hidden neuron. the errore,, tends to zero as the number ofincreases, i.e.,

Let us now assume that a new unit (neuron) is added to tieln—oc ¢» = 0, if the weights associated to the new hidden
hidden layer of the network. Let us also denoteSgs, ,, the added neuron are estimated by

estimate of specific actual losses provided by a networkjel {Wog1,Png1} = arg max I (18a)
hidden units. Then, based on (13), the following relationship is (€n, Trg1)
satisfied: and  wunq1 = Mol (18b)
n+1]|" -
. . . Consequently, if a neural network is constructed incremen-
St g1 =hng1(a(ti) = 5 1 + tngrrns1(alts)) tally, with weights that satisfy (18) then strongly convergence
= hp(a(t;)) + tns1rni1(alt;)). (15) to the target function is accomplished. Maximization of (18) is

performed using the algorithm of [19].
In the previous equatior;,,(-) refers to the function that However, in practice, the exact form of target functioac-
implements the new added hidden neuron. As results frahglly is unknown, and thus the erreg cannot be directly cal-
equation (14), functiom,,(-) is defined by the weight vector culated. For this reason, a training set is used, consistig of
w,4+1 and the respective bia, ;. In the adopted constructive transformers, all belonging to the same environment, to provide
method, only the parameters associated to the new hidden @@onsistent estimate ef,.

are permitted to change, i.e., the weights, 1, the biasd,, 1 In particular, Ie'F us denote &%, this training set. Then, an
and the weight outpui,., 1. All the other network weights are estimate of quantity” is given by
considered fixed. ' . Z (En(ts) — Ep) — (raga(aty)) — Fg1)?
In particular, the new network weights are estimated so that,  ¢;cs,,
the error between the actual specific iron losses and the onel = . = 2 (19)
Y (rapa(alti)) = Taga)

estimated by the network decreases as a new hidden neuron is
added. To estimate the new network weights, we initially deﬁnv(\?here
the following quantity:

t; €Sir

En(ti) =S¢, — 5 .1 = 5¢, — hn(a(t))]  (20)
(€nsTni1)? (16) is the absolute difference between the actual specific iron losses
and the predicted ones for a networkndfidden neurons in case
of a transformet; € S;.. In (19), F,, and7,.,, are the mean
where values of functiond,, (t;) andr,,(-) over all samples of se;,.
Equation (19) expresses the correlation between the function
en = ||S¢, — Sg;7n|| = ||k — hy|| (17) implemented by the new added hidden neuron and the previous

I' =
Irngall?
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residual error (before the new neuron is added) over all sam- TABLE I

ples (transformers) of training séf,. This means that the new LisT oF THE CANDIDATE ATTRIBUTES CONSIDERED ASPOSSIBLE
. . INPUTS OF THENETWORK

neuron compensates the residual error as much as possible and

therefore the error over data of the training set decreases as the

. . Symbol Expression
number of hidden neurons increases.

The generalization performance, however, of the neural net- h By
work, i.e., the error over data outside the training set, does not b (Ux PUT AU +UT ),4
keep on improving as more hidden units are added. This is due Gk
to the fact that a large number of hidden units makes the net- 5 (Uj, +U) +U} +Ug,)/4
work sensitive to the data ¢f,. Particularly, what a network is I L '
learning beyond a number of hidden neurons is actually noise ¢ K, 1K,
of data of the training set. As a result, the generalization perfor- Is E*/F!
mance starts to decrease and the incremental construction of the L s . /s .
network is terminated. In our case, this is accomplished by ap- s
plying the cross validation method. According to this method, L 5984
the available data are divided into two subsets; the first subset Koy
(training set) is responsible for estimating the network parame- Iy se/s?
ters, while the second subset (validation set) evaluates the net- i
work performance. The error on the validation set will normally L se1se
decrease during the initial phase of training, as does the error on P ‘ ;

L . . 10 K& /K
the training set. However, when the network begins to overfit o0
the data, the error on the validation set will typically begin to In Ko/ k4
rise and the constructive training algorithm is terminated (early B
stopping). Iy Ky /Ky,
B. Attribute Selection hs K, /K

Another factor, which affects the network performance, is the Iy [ . SM 544 s.,)
type of attributes used as network input. For attribute selection, i
initially, a large set of candidates is formed based on extensive b [s 50 ){sﬁ+s )
research and transformer designers’ experience. Particularly, in I Y
our case, 19 candidate attributes are examined, which are de- ' [SI,"” ){Si‘”,)
noted adl;, 7 = 1,2,---19 and presented in Table II. I [sus,,]{s +sa]

Inthis table V%, (Ujl_) denotes the specific iron losses of mag- g
netic material at 15000 Gauss (17 000 Gauss) of the left small I (S +52 ){s +5° ]
corest. The specific iron losses for the other three cores are de- Lo Y
noted accordinglyy’ denotes the sum of the actual iron losses ( *$, ]{ *s ]

of the four individual cores that assemble the transfortpand

is defined similarly to (6) as _ _ o _
Fe = F% + Fi + F¢ +F”+ 1) nodes. A node is said to be terminal if it has no children. On the
b 5} i contrary, each nonterminal node has two children and is charac-
whereF; and F}. are the actual (measured) iron losses of therized by an appropriate test (condition) of the following form:
left and rlght small individual core df;. Similarly, Iy and Fy 7.1 < 23)
correspond to the actual iron losses of the left and rlght large =T
individual core. The physical meaning of the other variables #fherey is a threshold value of attribute, optimally estimated
Table Il are explained in Section II. during the DT construction. This test dichotomizes the nonter-
1) Decision Tree (DT) MethodologyA decision tree (DT) Minal node in the sense that the left child contains all trans-
methodology [20], [21] has been adopted in this paper for dermer (samples), which satisfy the test of parent node, while
tribute selection. Initially, an acceptability criterion is definedthe right child contains the remaining transformers. For each
Let us denote a€), the class, which contains all acceptabl@0de, the number of transformers (samples) that this node con-
transformers and &8, the class, which contains all unaccepttains and the respective acceptability ratio is also presented.

able transformers. In our case, claséesaandC,, are definedas ~ Based on the acceptability ratio, a terminal node is classified
follows: to one of the two available classes. In particular, in case that

. pa the acceptability ratio is greater than 50%, the terminal node is
Co={t:: . < (1+H) (222) assigned to class,. Otherwise, it is assigned to clags. The
Cu={t;: P’ 2 1+ &) F) (22b)  exact notation used for each DT node of Fig. 5 is explained in
where¢ is a constant indicating the unacceptability thresholdFig. 6.

In order to describe the structure of a DT, we initially present A DT is created by applying two main operators; the splitting
an example in Fig. 5 created from a set of 1680 transformersayferator and the stopping operator. The first estimates the most
the first environment. As observed, the tree consists of two ddppropriate test that should be applied to a nonterminal node,
ferent types of nodes; the terminal nodes and the nontermimdlile the second determines whether a node is terminal or not.
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Fig. 5. Decision tree created from a set of 1680 transformers of the first environment.
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long (or in practice almost completely) in one of the two classes.
On the other hand, a node is denoted as “DEADEND” if the
gain by splitting this node provides no significant statistical in-
formation. This gain is determined by the risk leyadf the DT
[20]-[22].

2) Implementation IssuesThe risk levels affects the struc-
ture of a DT. In particular, in case a small value of risk level is
used, the tree is grown with a small number of nodes and vice
versa. However, the classification performance of a DT does not
keep on improving as its size increases. For this reason, the op-
timal value of risk levek is the one that provides the maximum
classification accuracy with the minimum possible DT com-
plexity (minimum number of tree nodes). In order to estimate
the classification performance of a DT, we use a diffesatl-
uation set For each sample (transformer) of this set, tbsts
(conditions) of the nonterminal nodes are evaluated until a ter-
minal node is reached. Then, the classification accuracy is com-
puted by comparing the actual class that this sample belongs to,

Fig.6. Explanation of the notation of the decision tree, which is used in Fig. ®/ith the class of terminal node, which this sample is assigned

to.

For the spitting operator, the optimal splitting rule described Fi9- 7 illustrates the classification accuracy of the DT of Fig. 5
in [20] is used in our case. More specifically, the algorithm e$!Sing & set of 560 transformers (samples) of the first environ-
timates the test that provides the best separation of all trafgent for risk levels in the range of 0.001% to 10%. As it can
formers of the examined node into acceptable and unacceptdieseen, the classification accuracy increases until a risk level
samples. The optimal slitting rule is repeated for each nodesnaller than 0.75%. Then, it starts to decrease. Furthermore,
the tree, until a node is labeled as terminal according to the stdfye maximum accuracy (i.e., 95.5%) is reached for risk levels in
ping criterion. Two different types of terminal nodes are distirthe interval 0.20%-0.75%. Fig. 8 illustrates the DT complexity
guished; the “LEAF” and “DEADEND” nodes. A node is said(number of nodes) versus the risk level. As observed, the DT
to be “LEAF” if it contains transformers, which completely becomplexity increases with respect to the risk level. By com-
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Taking into account all DTs, the attributes with a probability

Fig. 8. Effect of risk level on the decision tree complexity (number of treef appearance greater than 3% are selected as network inputs.
nodes). These attributes are presented in Table Ill. It should be men-
tioned that in this case we renumbered the selected attribute in-

bining Figs. 7 and 8, we can estimate the risk level value théices of Table Il as they are presented in consecutive order in
provides the maximum accuracy at the minimum possible pDigble 111. A small value of probability has been chosen since it
complexity. This is achieved using 13 DT nodes as illustrated ismore preferable to use more attributes as inputs to the network
Fig. 5. architecture than discard some (maybe significant for some sit-

The DT of Fig. 5 has been created by applying the aforemesitions) of them.
tioned splitting and stopping operators with a risk level equal to The selection of these attributes is reasonable and expected.
0.25%. As observed, only five attributes among the 19 candlore specifically, attributd; is the rated magnetic induction,
date ones are extracted in this case as the most appropriate\igh is also used in order to calculate iron losses at the de-
I, I,,I5, I 4, andIy;. sign phase by using the loss curve. Attribufgsnd/s express

It has been observed that the classification accuracy of the the average specific losses (W/Kg at 15000 Gauss and 17 000
deteriorates in case it is constructed by transformers belongfaguss, respectively) of magnetic material of the four individual
to all environments [12]. For this reason, three different megores used for transformer construction. Attribfités the ratio
surement sets, each of them corresponding to a specific efi-actual over theoretical weight of the four individual cores.
ronment, are used to construct the DT (2240, 2350, and 198tiribute 75 is equal to the ratio of actual over theoretical iron
samples respectively). In order to extract the most significa@sses of the four individual cores. The significance of the at-
attributes, which are used as inputs to the neural network, {iute I5 is that the iron losses of the three-phase transformer
built several DTs by 1) randomly selecting different transformé&epend on the iron losses of its individual cores. In the industrial
samples of each measurement set to build the tree and z)ewironment considered, it is observed that the arrangement of
using different values of constaftin our case, 30 randomly se-COres influences the assembled transformer core losses. This is
lected sets have created for each measureme(t set0 = 90  reflected through the selection of attribufigs Iz, and/s by the

sets for all environments), and five different values¢afini- DT methodology (see Table I1I).

formly distributed in the interval 7%—-15%. Then, for each case, ) )

the optimal risk level is estimated. This is performed by exarfr= Weight Adaptation

ining 20 different risk levels in the interval 0.001%—-10% and In some cases, the conditions under which the respective
the one which maximizes the DT classification accuracy at tineural network has been trained may slightly change over time.
minimum DT complexity is selected as the optimal one, as deer example, it is possible that different batches of magnetic
scribed above. Consequently 9000 DTs are exami#@c 20 material, belonging to the same environment, present small
x5 = 9000), 450 of which correspond to the optimal risk level/ariations in their technical characteristics. In such cases, the
value. The latter (i.e., the 450) are used for the attribute seleetwork performance is improved by introducing a weight
tion. As we have observed, in most cases, the same attributesaat@ptation mechanism, which slightly modifies the network
extracted, whereas some of them are not selected at all. Furtlvegights to the new conditions.

more, the same attributes are extracted, even for transformer§he weight adaptation mechanism is activated when the net-
belonging to different environments. This is due to fact that thveork performance deteriorates. This is accomplished during the
environment type determines the influence of an attribute valeealuation phas¢see Section Ill and Fig. 3), in which the pre-
on transformer iron losses but not the type of attributes. dicted iron losses are compared with the actual ones. In case
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that the average prediction error is greater than a pre-determin L=6
Small Cores

threshold, the weight adaptation mechanism is activated ar
new network weights are estimated. The threshold considere
is slightly greater than the average error over all data of a te:
set, which expresses the generalization performance of the ne
work.

The adaptive training algorithm modifies the weights so tha

1*T/F . 2MTF . 3¥TF
o2 i) 2o i) le 2 Juik4]

One possible arrangement of cores

g

the network appropriately responds to new data, and also pr .L. {5 |1°] 121 ) | 5 | 5 | P | 3 ! P | 7 l”l 2 ‘
vides a minimal degradation of the old information [23], [24]. " —
Training the network, without using the old information, but (N GA Individual

only the new data, would resultin a catastrophic forgetting of the
previous knowledge [25]. In our case, the algorithm proposedFig. 9. Example of the adopted encoding scheme in case of six large and six
[24] has been adopted to perform the weight adaptation. ~ Small cores.

V. GENETIC ALGORITHMS FORREDUCING IRON LOSSES The transformer actual losses involved in (25) are estimated
In this section, we describe the algorithm used for optimQV the neural network architecture as has been described in the

arrangement of the individual cores so that the iron losses RJevIous section. However, although the previous equation pro-

all constructed transformers are as minimal as possible. In p\ét'rqeS transformers of optimal quality, there is no guarantee that

ticular, in the following subsection the problem formulation i€l the generated transformers belong to the acceptable class [see

presented while Section V-B describes the genetic algorithff2@)]- For this reason, a very large value is assigned to a trans-

which is applied for the optimization. Finally, Section V-C disiormer whose predicted iron !o;ses satisfy (22b) (or are slightly

cusses issues related to the genetic algorithm convergence. SMaller to compensate prediction errors). Thus, any unaccept-
able core arrangement is rejected.

A. Optimization of Core Grouping Process As observed from (25), estimation of the optimal core
arrangement results in a global combinatorial optimization
af)roblem. Consequently, the previously used feedforward neural
network cannot be directly applied for minimizing (25). This
is due to the fact that a feedforward neural network is usually

c=[t{ t3 --- tX]* (24) suitable for function approximation or classification but not
o for function minimization. However, other neural networks
whereT indicates the transpose of a vector. models, like Hopfield networks or Boltzmann machines, trained

. Vectore is of IV x 1 dimensions si_ncg each ”a”SfOFf?“?r based on the simulated annealing algorithm, can be used to find
is represented by a# 1 vector as (1) indicates. A specific alhe optimal value,,, [26, pp. 125-131, 279-301]
op ’ . y .

rangement (combination) of all small and large cores, for CON-5As can be also applied [27], [28]. The main advantage
structing theV three-phase transformers, corresponds to a giv P these GA schemes is that t,hey simultaneously proceed

Vahf{e of Vecf?r?' th? refo:e, any reord?rl?_g gf t_ge ellement§ ultiple stochastic solution trajectories and thus allow various
vectore results in difierent arrangément ot individual COres, 1.0 4 0tions among different solutions toward one or more

. . int
d|fferent'three-phaset.ransformers. Flg.gpresents an exampl é’jrch spaces [29, p. 102], [27]. On the contrary, the neural
vectore in case that_S|x small and six large cores are available, . approaches normally follow one trajectory (deter-
In particular, the serial numbers from 1 to 6 correspond to sn:@

hile th bers f 7101210 Arand nistic or stochastic) which is repeated many times until a
cores, while the numbers from 710 L2 olarge cores. Arando Xtisfactory solution is reached. Furthermore, neural networks

selected arra.ngement o_f these cores is also presented in Figaﬁ be applied more appropriately for functions whose the
for constructing three different transformers. For example, th/griables are in product form, which is not held in our case. In

first transformer consists of the small cores with labels 5 anq following, a genetic algorithm is proposed to perform the
and of the large cores with labels 10 and 12. This is represengq remention’ed minimization. Table IV summarizes the main
by the vector [5 10 12 f] in accordance with (1). Then, vector

. . steps of the proposed method for reducing the transformer iron
c is constructed by concatenating the vectors of the three traps:,
formers. The core arrangement for the other two transformers is
generated accordingly and depicted in Fig. 9.

Itis clear that the estimation of N transformers with optimdp- Genetic Approach

quality (minimum iron losses) is equivalent to the estimation of In the genetic approach, possible solutions of the optimiza-

vectore, which minimizes the following: tion problem are represented by chromosomes whose “genetic
N material” corresponds to a specific arrangement of individual
arg min {Z P } (25) cores. This means that vecioof (24) is represented by a chro-
© i=1 mosome, while the serial numbers of individual cores are con-
wherec,,, is a vector which contains the optimal arrangemessidered as the genetic material of the chromosome. An integer
of all available small/large cores so that the actual losses owmemmber scheme is adopted for encoding the chromosome ele-
all N transformers are minimized. ments (genes) as is illustrated in Fig. 9.

Let us denote as a vector containing one possible combin
tion of the N three-phase transformets i = 1,---, N, that
can be constructed by tl2ex NV available small/large cores

Copt = arg min D =
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TABLE IV
SUMMARY OF THE MAIN STEPS OF THEPROPOSEDCOMBINED NEURAL NETWORK—GENETIC ALGORITHM SCHEME FORIRON LOSSREDUCTION

Step 1:  Based on customer's requirements and several techno-economical criteria, design the transformers of
a specific production batch. From the transformer design, the environment type (i.e., supplier,
thickness and grade of magnetic material) is defined.

Step 2: Based on the transformer design, construct the individual small and large cores and measure all
necessary parameters (i.e., the actual core losses and weight) so that the eight attributes of Table 3 for
a specific core arrangement can be calculated.

Step 3: Use the genetic algorithm to minimize the total specific iron losses for all transformers of the
production batch [equation (25)]. At each GA cycle, the neural network architecture is used for
estimating transformer losses. As input to the neural network, the attributes presented in Table III are
used.

Step 4: Assemble the transformers using the results of the combined neural network-genetic algorithm
scheme.

Step 5:  Measure the actual iron losses for all constructed transformers of the production batch. Then, compare
them with the predicted ones, which are provided by the neural network structure.

Step6: In case of large deviation, adapt the network weights using the algorithm presented in subsection
IV-C. Then, store the new estimated weights in the network database to be used for the following

production batches. Otherwise, retain the same network weights.

Initially, M different chromosomes, say, - --,cas are cre- Theroulette whee[28] is used as the parent selection proce-
ated to form a population. In our cadd, possible solutions of dure. This is accomplished by assigning to each chromosome
the grouping method used in the current practice are selecteselection probability equal to the ratio of the fithess value of
for the initial population. This is performed so that the genetitie respective chromosome over the sum of fithess values of all
material of the initial chromosomes is of somehow good qualithromosomes, i.e.,
and thus fast convergence of the GA is achieved. The perfor-
mance of each chromosome, representing a particular core ar- M
rangement, is evaluated by the sum of the predicted actual iron pples) = F(c;) Z F(c;) (27)
losses of all transformers corresponding to this chromosome. i=1
The neural network model is used as iron loss predictor. For each
chromosome, éitness functions used to map its performancewherep,(c;) is the probability of the chromosomg to be se-
to afitness value, following eank-based normalization schemelected as parent. Equation (27) means that chromosomes of high
In particular, all chromosomes < = 1,2,---, M areranked in quality present higher chance of survival in the next genera-
ascending order according to their performance, i.e., the suntioh. Using this schemé&/ chromosomes are selected as candi-
the predicted transformer losses. ketk(c;) € {1,---,M} date parents for generating the next population. Obviously, some
be the rank of chromosomg (rank= 1 corresponds to the bestchromosomes would be selected more than once which is in ac-
chromosome anthnk = M to the worst). Defining an arbitrary cordance with the Schema Theorem [28]; the best chromosomes
fitness valuely for the best chromosome, the fitheBsc;) of getmore copies, the “average” stay even, while the worst die off.
theith chromosome is given by the linear function Consequently, each chromosome has a growth rate proportional
to its fitness value.

In the following step of the algorithm, couples of chromo-
somes (two parents) are randomly selected from the set of
candidate ones, obtained from the parent selection mecha-
wherey is a decrement rate and is computed in such a way tm$m. Then, their genetic material is mated to generate new
the fitness functior¥'(c;) takes always positive values, that ichromosomes (offspring). The number of couples selected
< Fo/(M —1). The major advantage of the rank-based nodepends on a crossover rate. A crossover mechanism is also
malization is that it prevents the generationsofper chromo- used to define how the genes should be exchanged to produce
somesavoiding premature convergence to local minima, sindke next generation. Several crossover mechanisms have been
fitness values are uniformly distributed [27], [30]. reported in the literature. In our approach, a modification of the

The parent selection mechanism then begins by selecting apiform crossover operatdf7], [28] has been adopted. As is
propriate chromosomes (parents) from the current populati@xplained in the following section, this modification does not

F(c;) = Fy — [rank(c;) — 1p, i=1,--- N (26)
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Crossover Points consists ofA chromosomes. Several GA cycles including fit-
/\ ness evaluation, parent selection, crossover, and mutation are
|5 10|12| 11z | 9 | 3 ]3 |6 | 7 ’11]4| |5 |8112| 3 | 2‘9 |10| 1 |617 |11|4| repeated, unt_ll the population converges to an op.tlmal solutlo.n.
2 The GA terminates when the best chromosome fitness remains
R B =5 constant for a large number of generations, indicating that fur-

ther optimization is unlikely.

[4[8fig]3]2ioftfsu]7]o]5] |atofio]1]2]8]1[6]3]7]s]5]

C. GA Convergence

S ' The aforementioned modifications of the crossover and mu-
Parents Offspring tation operators do not effect the convergence property of the
GA. To show this, an analysis is presented in the following, by
Fig. 10. Example of the proposed modification of the crossover operator. Modeling the GA as a Markov chain. In particular, each state of
the Markov state corresponds to a possible solution of the GA,
) ) i.e., a specific vector c. Let us denotelas set, which contains
spoil the GA convergence. In this case, each parent gene, if. nossible Markov states. Then, for two arbitrary states, say,
an individual core, is considered as a potential crossover pom’tj € D, we denote ag;; the transition probability from statie
In particular, a gene is exchanged (undergone crossover), §oastatej. Gathering transition probabilities for all stateszin
random variable, unlformly distributed in the mteryal [0 1], iShe transition matrix of the chain is formed Bs= (pi;). Since
smaller than a predetermined threshold. Otherwise, the ggRgnhe GA, transition from one state to another is obtained by

remains unchanged. It is possible however for an indiVidUéprying the crossover and mutation operator, maisan be
core to appear more than once in the genetic material of t@@composed as follows [31]:

generated chromosome. This means that one individual core
is placed to more than one transformer or to more than one
position of the same transformer, which corresponds to an
unacceptable core arrangement in (2). For this reason, the
following modification of the uniform crossover operator isvhere matrixC indicates the effect of crossover operator and
adopted. After the exchange of one gene between the tmatrix M the effect of mutation operator.

parents, it is highly possible that the gene appears twice in theLet us denote as;; the elements of matriC = (¢;,). The
chromosome. In this case the gene coinciding with the new; express the transition probability from stadtec D to the
gene is replaced with the gene before the exchange. Fig.statej € D, if only the effect of the crossover operator is
illustrates an example of the proposed crossover mechanisntéiken into consideration. Since the crossover operator proba-
case that six small and six large cores are assembled to gendvdigtically maps any state ap to any other state ab, matrix
three transformers. In this example, the two parents exchardés a stochastic matrix. More specifically, a matrix is said to
their genes only between the crossover points 2, 3, and 4 bar stochastic if its elements; satisfy the following property:
simplicity. As observed, the genés0, 12, 1} of the first parent

are exchanged with the genés, 12,3} of the second parent.

By applying this exchange of genes, in the first chromosome
the genes 8 and 3 appear twice, while genes 10 and 1 disappear.
An equivalent problem occurs in the second chromosome
For this reason, in the first chromosome the geflgs 1} are

P=C-M (28)

>~ ¢ij = 1= Matrix C = (c;;) is stochastic. (29)

‘The previous equation means that from a valid solution (i.e.,
. . . . a state ofD), the crossover operator produces another valid so-
one-by-one exchanged with gens 3} as Fig. 10 depicts. lution (i.e., another state dD). This is exactly happened with

The same happens for the second chromosome. e )
i ] the proposed modification of the crossover operator, since only
The next step is to apputationto the newly created pop- \4iid solutions are permitted.

ulation, introducing random gene variations that are useful for g, the other hand. matriM is positive. This is due to the
restoring lost genetic material, or for producing new materigdc that the mutation operator is applied independently to each
that corresponds to new search areas [BBJiform mutation  gene of a chromosome. Furthermore, each gene can potentially
is the most common mutation operators and is selected for Qfdergo mutation. Consequently, the elements of matrix
optimization problem. In particular, for each gene a unifonM, which express the transition probabilities from state D

number is generated into the interval [0 1] and if this numbeg siate; ¢ D taking into account only the effect of the mutation
is smaller than the mutation rate the respective gene is Swapeﬁgrator are strictly positive:

for other randomly selected gene of the same category, i.e., small
or large core. Otherwise, the gene remains unchanged. In our
experiment, the mutation rate is selected to be 5%. Swapping
genes of the same category is necessary for creating valid core
arrangement. It has been proven in [31] that if matri& is stochastic and
At each iteration, a new population is created by inserting timeatrix M is positive, the transition matriR = C-M [see (28)]
new chromosomes, generated by the crossover mechanism,@frithe Markov chain is primitive (i.e., there exigts> 0: P*
deleting their respective parents, so that each population alwaypositive). In this case, it has been shown in [31] that the GA

m;; > 0= Matrix M = (m,;) is positive. (30)
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Early Stopping Point

TABLE V 0.2
NUMBER OF DATA INCLUDED IN THE TRAINING, VALIDATION , AND TEST SET .
FOR ALL THREE ENVIRONMENTS - Training Set
o 5 . .
.............. Valldatlon Set
Measurement Set | Training Set | Validation Set Test Set ;5 0.157
1* Environment 2240 1110 480 650 g
2" Environment 2350 1150 495 705 %
39 Environment 1980 960 420 600 &~ 0.1
L
=
)
122}
L
<

converges to the optimum solution if the best solution is main-
tained over time. This means that, starting from any arbitrary
state (valid solution), the algorithm visits any other state (valid
solution) within a finite number of transitions.

2 4 6 8 10

Number of Hidden Units
VI. RESULTS Fig. 11. Network performance, expressed in absolute relative error, versus the
number of hidden neurons over data of training and validation set for the first

In this section, we analyze the results obtained by applyiffg/ironment

the proposed neural network-genetic algorithm scheme to a
manufacturing industry following the wound core technology. 02
In particular, Section VI-A presents the performance of the
neural network architecture as an accurate predictor of trans-
former iron losses, while Section VI-B indicates the iron loss
reduction which is achieved using the combined neural-ge-
netic scheme. Finally, Section VI-C discusses the economic
advantages that arise by the use of the proposed scheme to the
examined manufacturing industry.

1* Environment

©
—
th

Absolute Relative Error
=3

o

o
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A. Iron Loss Prediction

To predict transformer iron losses, we initially construct three
industrial measurement sets (MSs), each of which corresponds . . . ‘ .
to a specific environment. In particular, the measurement set of '™ 4 6 8 10
the first environment comprises 2240 actual industrial samples Number of Hidden Units
(transformers) while the set of the second and third enVIron_ 12. Comparison of the network performance, expressed in absolute
ment 2350 and 1980 samples (transformers) reSpeCt'Vely E?é%hve error, versus the number of hidden neurons over data of the validation
sample is a pair of the eight attributes selected by the DT, (S2€in case that one and all environments are used.

Table IIl) and the associated actual specific iron losses of the

transformer. The measurement set of each environment is ran-
where we recall thaty, are the actual (measured) specific iron
domly partitioned into three disjoint sets:

o losses of transforme; andS“ _the predicted ones in case that
1) the training set; the number of hidden neurons of the network is equal
2) the validation set; As is observed, the error on training set decreases monoton-
3) the test set. ically for an increasing number of hidden neurons. Instead, the
The training set is used to estimate the network parameters (iegror on validation set decreases until eight hidden neurons are
weights), the validation set to terminate network training (seglded and then it starts to increase. This is called early stop-
Section IV-A), while the test set to evaluate the network aging point (eight hidden neurons) and is depicted in Fig. 11.
curacy. Table V presents the number of data included in tighen we look at the “training” curve (solid line), it appears that
training, validation and test set for the three examined envirofe could improve the network performance by using more than
ments. eight hidden neurons. This is due to the fact that the proposed
Fig. 11 illustrates the network performance versus the numlagmstructive algorithm estimates the new network weights so
of hidden neurons over all data in the training and validation sifat the output of the new added neuron compensates the current
for the first environment. In our case, the network performangesidual error [see (18)— (20)]. As a result, the error over data of
is evaluated by the average absolute relative prediction &ypr the training set s driven to fall. In reality, however, what the net-
which is defined as follows: work is learning beyond the early stopping point is essentially
noise contained in the training data. For this reason, the “valida-
. I5e — Ga | tion” curve (dotted line) increases beyond this point, indicating
R, =~ Z % * 100% (31) thatthe generalization performance of a network with more than
L e S¢, eight hidden neurons begins to deteriorate, since overfitting of
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Fig. 13. Fractile diagram of transformer specific iron losses for the firgtroduction batches before the adaptation of the neural network weights.
environment.
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the training data is accomplished. As a result, eight hidden neu- _ , _

. . Fig. 15. Evolution of average absolute relative error after the adaptation of the
rons are selected for the neural network associated to the first ﬁlﬂj—ral network weights.
vironment. Similar prediction accuracy is observed for the net-

works corresponding to the other two environments, where the . )
most appropriate number of hidden neurons is estimated to%omte relative error. If the average error of a production batch

eight and nine, respectively. is above this limit then the Weig_ht adaptation mechanism is_ ac-
The prediction accuracy of the neural network versus th¥ated and the neural network is retrained using the algorithm
number of hidden neurons when we mix data of all examin&§scribed in Section IV-C. For example, Fig. 14 shows the av-
environments in the validation set, is depicted in Fig. 12 (dott&ja9€ absolute relative error for various production batches of
line). In this case, the environment type is fed as additiond€ first environment, the average error on the test set and the
input (attribute) to the neural network. The absolute relatiPPer limit of the average error. More specifically the average

error obtained using data only of the first environment is al&Tor on the test set is equal to 0.95% as given in Table VI and

plotted in this figure for comparison purposes. As is observedi® UPPer limit is set 10% above the average error of the test

smaller prediction error is achieved if the network has trainéfl I-€- the upper limitis 1.045%. Itis observed that at the 19th
using data of the same environment. production batch the average absolute relative error exceeds the

Fig. 13 presents the fractile diagram or the Quantile—Quantfl§fined upper limit of 1.045%. Consequently, the weight adap-
plot [32] of the specific iron losses for the first environment. 140N mechanism is activated. After adaptation, the average ab-
this figure, the real (measured) specific iron losses are plotEpfute relative error on the test set is 0.94% and the new upper
versus the predicted (by the loss curve and the neural netwgffjit IS Set 10 1.034%, i.e., 10% above the average error of the
specific iron losses. Perfect prediction lies on a line 6fdbpe. test set. Fig. 15 presents the average absolute relative error for

Itis observed that the prediction provided by the neural netwofR'10US production batches after the adaptation of the neural net-
(dotted line in Fig. 13) is closer to the optimal line of*4fan work weights. Itis observed that for the following 11 production
the loss curve prediction (solid line in Fig. 13). batches the average absolute relative error is within the tolerated

Table VI presents the average absolute relative error on tEggrval-
set, for the three environments considered. In all cases, the )
neural network improves the prediction accuracy by more th&h Ifon Loss Reduction
65%. The proposed GA-based grouping process was used in order
Despite the very good performance of the neural network ia group 100 small and 100 large cores of the same production
predicting iron losses, its application during transformer cofvatch of 50 transformers, 100 kVA and 50 Hz of first environ-
struction must be monitored. The reason is that during the manent.
ufacturing, the conditions to which the neural network has beenFig. 16 shows the minimum value, over the whole popula-
trained may change. The way of monitoring the performancetidn, of the total predicted iron losses of the best chromosome
the neural network is to define an upper limit for the averagersus the cycle (or generation) of the GA. The total predicted
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Fig. 17. Evaluating the performance of the GA for a production batch of tl}eﬁngntrr(])irr\crjn::\:i?Onr(]jnggznproductlon batch of 60 transformers, 250 kVA, 50 Hz, of

first environment.

iron losses decrease as the GA cycle increases, until it reactreasformer iron losses, b) to reduce the cost of materials, and
a minimum value of 10 846 W at 86th generation. c) to avoid paying loss penalties.

The output of the genetic algorithm grouping process is notFig. 19 shows the iron loss distribution of a production batch
only the minimum value of the total predicted iron losses of thef 50 transformers, 160 kVA, into two different periods. In pe-
best chromosome (i.e., 10846 W for the example of Fig. 16ipd 1, the method of grading into quality classes is used as
of the 50 transformers. It also provides for each one of the g@ouping process, while in period 2, the proposed neural net-
transformers the optimal core arrangement and the associat@tk-genetic algorithm is applied. In both periods, the trans-
predicted iron losses. former specification is the same and the desired (guaranteed)

Fig. 17 evaluates the performance of the GA comparing the-load losses are 315 W.
predicted with the actual iron losses (measured after the transSince large deviations in iron losses were observed in period
former construction) for each one of the 50 transformers, for thethe designed iron losses were 296 W, namely 6% lower than
example of Fig. 16. In this case, thgerageabsolute relative the desired iron losses. On the other hand, in period 2 the iron
error is equal to 1.03%. Fig. 18 confirms the very good perfofess deviations were much lower and therefore the designed iron
mance of the GA in the other two environments considered. ldsses could be raised to 311 W, that is, 1.3% lower than the
this case, the average absolute relative erroris 0.95% and 1.1d¥%sired iron losses.

respectively. From Fig. 19 it can be concluded that the iron loss results
o of period 2 are by far better than the results of period 1. More
C. Exploitation of the Results specifically, the variation of iron losses is smaller (23.6 W for

The proposed combined neural network-genetic algorithperiod 2, instead of 48.5 W for period 1) and the mean value
approach has been coded in a genetic algorithm neural netwofkron losses (313.15 W, instead of 307.31 W) is closer to the
(GANN) toolbox and is currently used in the considered induslesired iron losses. The results of Fig. 19 are summarized in
trial environment. Using appropriate data acquisition systenigble VII.
measurements are collected and fed to the GANN toolbox asThe results presented in Fig. 19 and Table VII have been
well as to a statistical processing and graphical visualizatieonfirmed for a large number of transformer constructions.
toolbox. Table VIII presents the evolution of the average absolute

The application of the combined neural network-genetic alelative error of iron losses for the two different periods. In
gorithm provides significant economic advantages for the trarthis case, the average absolute relative error is defined by
former manufacturer. More specifically, it helps a) to redudke difference of the designed iron losses from the desired
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Fig. 19.
used as grouping process (Period 2).

Iron loss distribution of 50 transformers, 160 kVA. (a) Grading into quality classes is used as grouping process (Period 1) and (b) th&Arapose

TABLE VI
IRON LOSSRESULTS OF50 TRANSFORMERS INTOTWO DIFFERENT PERIODS

Actual iron losses (W)
Period Desired Designed Safety Min Max Mean Standard
losses (W)  losses (W)  margin (%) deviation
1 315.00 296.00 6.0 288.70 337.20 307.31 11.18
2 315.00 311.00 13 302.10 325.70 313.15 537
TABLE VIII

EVOLUTION OF AVERAGE ABSOLUTE RELATIVE ERROR INTO TWO
DIFFERENT PERIODS

Average absolute relative error (%)

Period Grouping process Mean Standard deviation
1 Quality classes 54 09
2 Genetic algorithm - neural network 1.1 04

The proposed scheme leads to reduction of the produc-
tion cost. Let us assume that it is required to construct 50
kVA transformers with 131 W guaranteed losses. In period
1, a 6.0% safety margin was satisfactory, and the transformer
was calculated to have 123 W designed losses. In period 2
the transformer is evaluated to have 129 W designed losses
(safety margin 1.5%). The ability for the reduction of the
safety margin between the designed and the desired iron
losses offers significant savings of magnetic material. More-
over, the reduction of the weight of the magnetic material

losses. Each of the periods corresponds to a different groupigggs to the construction of transformers of smaller dimen-
process of cores (period 1 refers to the “quality class” groupiRghns. The latter results in the reduction of the weight of the
method, while period 2 to the proposed neural network-genefigaterial of the windings (copper), insulating materials and

algorithm).

transformer oil.
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TABLE X
COMPARISON OF THECOST OFMATERIALS FOR THE SAME GUARANTEED LOSSES

Magnetic Copper Insulating 0il Total
material materials materials
Weight (Kg) 152.08 58.13 12.19 101.24 -
Period 1 Cost ($) 265.54 184.54 38.70 57.85 546.63
Cost (%) 100.00 100.00 100.00 100.00 100.00
Weight (Kg) 146.00 57.20 12.00 98.00 -
Period 2 Cost (§) 254.92 181.59 38.10 56.00 530.60
Cost (%) 96.00 98.40 98.44 96.80 97.07
Material Cost

Period 1
O Period 2

Cost (%)

Magnetic Copper Insulating Oil Total materials
material materials

Fig. 20. Reduction of the cost of materials of two different 50 kVA transformer designs.

TABLE X
COMPARISON OF THECOST OF MATERIALS INTO TWO DIFFERENT PERIODS

Cost of materials (% of Period 1)

kVA  Period Desired Designed Magnetic  Copper Insulating  Oil Total

losses (W)  losses (W) material materials materials
100 1 220 208 100.00 100.00 100.00  100.00 100.00
100 2 220 219 95.80 98.38 98.38 96.77  97.06
160 1 315 296 100.00 100.00  100.00 100.00 100.00
160 2 315 311 96.10 98.44 98.44 96.88  97.23
250 1 446 425 100.00 100.00  100.00 100.00 100.00
250 2 446 448 96.10 98.38 98.38 96.75  97.14

Table IX shows the reduction of transformer cost achieved irhis reduction is significant since the four above-mentioned ma-
period 2 in relation to the period 1 for the 50 kVA transformeterials represent about the 75% of the total cost of transformer
design. For both periods the cost of materials is considered torhaterials.
$1 746/Kg for the magnetic material, $3 175/Kg for the copper
and the insulating materials, and $571/Kg for the transformer
oil. The cost reduction results are presented in Fig. 20.

Table X presents the reduction of the cost of materials In this paper, neural networks are combined with GAs in order
achieved for transformers of 100, 160, and 250 kVA for perid reduce transformer iron losses. More specifically, neural net-
2 in relation to period 1. In this table, the cost of each one eforks are used to predict iron losses of the wound core type
the materials is expressed as a percentage of the respective ttagsformers prior to their assembly. Each of the neural net-
of period 1. works is suited to a different environment, i.e., to a certain sup-

From Table X, it can be seen that for the three different typgdier, grade, and thickness of magnetic material. The prediction
(kVA) of transformer designs an approximately 3.0% reductios based on measurements on the individual cores taken at the
of the cost of the four main materials of transformer is achieveglarly stages of transformer construction. Furthermore, the GAs

VIl. CONCLUSION
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are used in combination with neural networks in order to reduce?]
the transformer iron losses. Application of the proposed artifi-
cial intelligence framework to a transformer manufacturing in—[23]
dustry has verified the accuracy of the prediction in all the ex-
amined environments and reduction of the transformer lossd3%]
has been achieved. These results provide significant economic

gains to the transformer manufacturer.
[25]
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